增强二甲双胍的抗癌潜力:高效纳米塑料的制备,HEP-2细胞的体外细胞毒性研究和反应组增强途径分析

IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics: X Pub Date : 2023-10-23 DOI:10.1016/j.ijpx.2023.100215
Shereen Nader Raafat , Sara Abd El Wahed , Noha M. Badawi , Mona M. Saber , Maha R.A. Abdollah
{"title":"增强二甲双胍的抗癌潜力:高效纳米塑料的制备,HEP-2细胞的体外细胞毒性研究和反应组增强途径分析","authors":"Shereen Nader Raafat ,&nbsp;Sara Abd El Wahed ,&nbsp;Noha M. Badawi ,&nbsp;Mona M. Saber ,&nbsp;Maha R.A. Abdollah","doi":"10.1016/j.ijpx.2023.100215","DOIUrl":null,"url":null,"abstract":"<div><p>Metformin (MET), an oral antidiabetic drug, was reported to possess promising anticancer effects. We hypothesized that MET encapsulation in unique nanospanlastics would enhance its anticancer potential against HEP-2 cells. Our results showed the successful fabrication of Nano-MET spanlastics (d = 232.10 ± 0.20 nm; PDI = 0.25 ± 0.11; zeta potential = (−) 44.50 ± 0.96; drug content = 99.90 ± 0.11 and entrapment efficiency = 88.01 ± 2.50%). MTT assay revealed the enhanced Nano-MET cytotoxicity over MET with a calculated IC<sub>50</sub> of 50 μg/mL and &gt; 500 μg/mL, respectively. Annexin <em>V</em>/PI apoptosis assay showed that Nano-MET significantly decreased the percentage of live cells from 95.49 to 93.70 compared to MET and increased the percentage of cells arrested in the G0/G1 phase by 8.38%. Moreover, Nano-MET downregulated BCL-2 and upregulated BAX protein levels by 1.57 and 1.88 folds, respectively. RT-qPCR revealed that Nano-MET caused a significant 13.75, 4.15, and 2.23-fold increase in caspase-3, −8, and − 9 levels as well as a 100 and 43.47-fold decrease in cyclin D1 and mTOR levels, respectively. The proliferation marker Ki67 immunofluorescent staining revealed a 3-fold decrease in positive cells in Nano-MET compared to the control. Utilizing the combined Pathway-Enrichment Analysis (PEA) and Reactome analysis indicated high enrichment of certain pathways including nucleotides metabolism, Nudix-type hydrolase enzymes, carbon dioxide hydration, hemostasis, and the innate immune system. In summary, our results confirm MET cytotoxicity enhancement by its encapsulation in nanospanlastics. We also highlight, using PEA, that MET can modulate multiple pathways implicated in carcinogenesis.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"6 ","pages":"Article 100215"},"PeriodicalIF":5.2000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156723000592/pdfft?md5=f0b1bf05cfc37b391c73e1cb05c14e18&pid=1-s2.0-S2590156723000592-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing the anticancer potential of metformin: fabrication of efficient nanospanlastics, in vitro cytotoxic studies on HEP-2 cells and reactome enhanced pathway analysis\",\"authors\":\"Shereen Nader Raafat ,&nbsp;Sara Abd El Wahed ,&nbsp;Noha M. Badawi ,&nbsp;Mona M. Saber ,&nbsp;Maha R.A. Abdollah\",\"doi\":\"10.1016/j.ijpx.2023.100215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metformin (MET), an oral antidiabetic drug, was reported to possess promising anticancer effects. We hypothesized that MET encapsulation in unique nanospanlastics would enhance its anticancer potential against HEP-2 cells. Our results showed the successful fabrication of Nano-MET spanlastics (d = 232.10 ± 0.20 nm; PDI = 0.25 ± 0.11; zeta potential = (−) 44.50 ± 0.96; drug content = 99.90 ± 0.11 and entrapment efficiency = 88.01 ± 2.50%). MTT assay revealed the enhanced Nano-MET cytotoxicity over MET with a calculated IC<sub>50</sub> of 50 μg/mL and &gt; 500 μg/mL, respectively. Annexin <em>V</em>/PI apoptosis assay showed that Nano-MET significantly decreased the percentage of live cells from 95.49 to 93.70 compared to MET and increased the percentage of cells arrested in the G0/G1 phase by 8.38%. Moreover, Nano-MET downregulated BCL-2 and upregulated BAX protein levels by 1.57 and 1.88 folds, respectively. RT-qPCR revealed that Nano-MET caused a significant 13.75, 4.15, and 2.23-fold increase in caspase-3, −8, and − 9 levels as well as a 100 and 43.47-fold decrease in cyclin D1 and mTOR levels, respectively. The proliferation marker Ki67 immunofluorescent staining revealed a 3-fold decrease in positive cells in Nano-MET compared to the control. Utilizing the combined Pathway-Enrichment Analysis (PEA) and Reactome analysis indicated high enrichment of certain pathways including nucleotides metabolism, Nudix-type hydrolase enzymes, carbon dioxide hydration, hemostasis, and the innate immune system. In summary, our results confirm MET cytotoxicity enhancement by its encapsulation in nanospanlastics. We also highlight, using PEA, that MET can modulate multiple pathways implicated in carcinogenesis.</p></div>\",\"PeriodicalId\":14280,\"journal\":{\"name\":\"International Journal of Pharmaceutics: X\",\"volume\":\"6 \",\"pages\":\"Article 100215\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590156723000592/pdfft?md5=f0b1bf05cfc37b391c73e1cb05c14e18&pid=1-s2.0-S2590156723000592-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics: X\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590156723000592\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156723000592","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

二甲双胍(Metformin, MET)是一种口服降糖药,据报道具有良好的抗癌作用。我们假设MET包封在独特的纳米塑料中可以增强其对HEP-2细胞的抗癌潜力。结果表明:成功制备了纳米met塑料(d = 232.10±0.20 nm;pdi = 0.25±0.11;Zeta电位=(−)44.50±0.96;药物含量= 99.90±0.11,包封效率= 88.01±2.50%)。MTT实验显示纳米MET的细胞毒性比MET增强,IC50为50 μg/mL和>500 μg/mL。Annexin V/PI凋亡实验显示,与MET相比,Nano-MET显著降低活细胞百分比,从95.49降低到93.70,使阻滞在G0/G1期的细胞百分比提高8.38%。此外,纳米met下调BCL-2和上调BAX蛋白水平分别为1.57倍和1.88倍。RT-qPCR显示,纳米met导致caspase-3、- 8和- 9水平分别显著增加13.75倍、4.15倍和2.23倍,cyclin D1和mTOR水平分别显著降低100倍和43.47倍。增殖标志物Ki67免疫荧光染色显示,与对照组相比,纳米met中的阳性细胞减少了3倍。利用联合途径富集分析(PEA)和Reactome分析表明,某些途径包括核苷酸代谢、nudix型水解酶、二氧化碳水合作用、止血和先天免疫系统具有高富集。总之,我们的研究结果证实了MET在纳米塑料中的包封增强了细胞毒性。我们还强调,使用PEA, MET可以调节与致癌有关的多种途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the anticancer potential of metformin: fabrication of efficient nanospanlastics, in vitro cytotoxic studies on HEP-2 cells and reactome enhanced pathway analysis

Metformin (MET), an oral antidiabetic drug, was reported to possess promising anticancer effects. We hypothesized that MET encapsulation in unique nanospanlastics would enhance its anticancer potential against HEP-2 cells. Our results showed the successful fabrication of Nano-MET spanlastics (d = 232.10 ± 0.20 nm; PDI = 0.25 ± 0.11; zeta potential = (−) 44.50 ± 0.96; drug content = 99.90 ± 0.11 and entrapment efficiency = 88.01 ± 2.50%). MTT assay revealed the enhanced Nano-MET cytotoxicity over MET with a calculated IC50 of 50 μg/mL and > 500 μg/mL, respectively. Annexin V/PI apoptosis assay showed that Nano-MET significantly decreased the percentage of live cells from 95.49 to 93.70 compared to MET and increased the percentage of cells arrested in the G0/G1 phase by 8.38%. Moreover, Nano-MET downregulated BCL-2 and upregulated BAX protein levels by 1.57 and 1.88 folds, respectively. RT-qPCR revealed that Nano-MET caused a significant 13.75, 4.15, and 2.23-fold increase in caspase-3, −8, and − 9 levels as well as a 100 and 43.47-fold decrease in cyclin D1 and mTOR levels, respectively. The proliferation marker Ki67 immunofluorescent staining revealed a 3-fold decrease in positive cells in Nano-MET compared to the control. Utilizing the combined Pathway-Enrichment Analysis (PEA) and Reactome analysis indicated high enrichment of certain pathways including nucleotides metabolism, Nudix-type hydrolase enzymes, carbon dioxide hydration, hemostasis, and the innate immune system. In summary, our results confirm MET cytotoxicity enhancement by its encapsulation in nanospanlastics. We also highlight, using PEA, that MET can modulate multiple pathways implicated in carcinogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Pharmaceutics: X
International Journal of Pharmaceutics: X Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.60
自引率
0.00%
发文量
32
审稿时长
24 days
期刊最新文献
Trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib for the targeted therapy of HER-2-positive breast cancer Ultrasound-targeted sirolimus-loaded microbubbles improves acute rejection of heart transplantation in rats by inhibiting TGF-β1-Smad signaling pathway, promoting autophagy and reducing inflammation A hybrid system of mixture models for the prediction of particle size and shape, density, and flowability of pharmaceutical powder blends From design to 3D printing: A proof-of-concept study for multiple unit particle systems (MUPS) printed by dual extrusion fused filament fabrication Augmented glycerosomes as a promising approach against fungal ear infection: Optimization and microbiological, ex vivo and in vivo assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1