人工智能能增强比特币的繁荣吗

Matheus José Silva de Souza , Fahad W. Almudhaf , Bruno Miranda Henrique , Ana Beatriz Silveira Negredo , Danilo Guimarães Franco Ramos , Vinicius Amorim Sobreiro , Herbert Kimura
{"title":"人工智能能增强比特币的繁荣吗","authors":"Matheus José Silva de Souza ,&nbsp;Fahad W. Almudhaf ,&nbsp;Bruno Miranda Henrique ,&nbsp;Ana Beatriz Silveira Negredo ,&nbsp;Danilo Guimarães Franco Ramos ,&nbsp;Vinicius Amorim Sobreiro ,&nbsp;Herbert Kimura","doi":"10.1016/j.jfds.2019.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to investigate how Machine Learning (ML) techniques perform in the prediction of cryptocurrency prices. We answer if Support Vector Machines (SVM) and Artificial Neural Networks (ANN) based strategies can generate abnormal risk-adjusted returns when applied to Bitcoin, the largest decentralized digital currency in terms of market capitalization. Findings indicate that traders are able to earn conservative returns on the risk adjusted basis, even accounting for transaction costs, when using SVM. Furthermore, the study suggests that ANN can explore short run informational inefficiencies to generate abnormal profits, being able to beat even buy-and-hold during strong bull trends.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"5 2","pages":"Pages 83-98"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jfds.2019.01.002","citationCount":"26","resultStr":"{\"title\":\"Can artificial intelligence enhance the Bitcoin bonanza\",\"authors\":\"Matheus José Silva de Souza ,&nbsp;Fahad W. Almudhaf ,&nbsp;Bruno Miranda Henrique ,&nbsp;Ana Beatriz Silveira Negredo ,&nbsp;Danilo Guimarães Franco Ramos ,&nbsp;Vinicius Amorim Sobreiro ,&nbsp;Herbert Kimura\",\"doi\":\"10.1016/j.jfds.2019.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims to investigate how Machine Learning (ML) techniques perform in the prediction of cryptocurrency prices. We answer if Support Vector Machines (SVM) and Artificial Neural Networks (ANN) based strategies can generate abnormal risk-adjusted returns when applied to Bitcoin, the largest decentralized digital currency in terms of market capitalization. Findings indicate that traders are able to earn conservative returns on the risk adjusted basis, even accounting for transaction costs, when using SVM. Furthermore, the study suggests that ANN can explore short run informational inefficiencies to generate abnormal profits, being able to beat even buy-and-hold during strong bull trends.</p></div>\",\"PeriodicalId\":36340,\"journal\":{\"name\":\"Journal of Finance and Data Science\",\"volume\":\"5 2\",\"pages\":\"Pages 83-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jfds.2019.01.002\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Finance and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405918818300953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918818300953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 26

摘要

本文旨在研究机器学习(ML)技术在预测加密货币价格方面的表现。我们回答,当应用于市值最大的去中心化数字货币比特币时,基于支持向量机(SVM)和人工神经网络(ANN)的策略是否会产生异常的风险调整回报。研究结果表明,使用支持向量机时,即使考虑交易成本,交易者也能在风险调整的基础上获得保守收益。此外,研究表明,人工神经网络可以探索短期信息效率低下,以产生异常利润,甚至能够在强劲的牛市趋势中击败买入并持有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can artificial intelligence enhance the Bitcoin bonanza

This paper aims to investigate how Machine Learning (ML) techniques perform in the prediction of cryptocurrency prices. We answer if Support Vector Machines (SVM) and Artificial Neural Networks (ANN) based strategies can generate abnormal risk-adjusted returns when applied to Bitcoin, the largest decentralized digital currency in terms of market capitalization. Findings indicate that traders are able to earn conservative returns on the risk adjusted basis, even accounting for transaction costs, when using SVM. Furthermore, the study suggests that ANN can explore short run informational inefficiencies to generate abnormal profits, being able to beat even buy-and-hold during strong bull trends.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
期刊最新文献
Unsupervised generation of tradable topic indices through textual analysis Optimal rebalancing strategies reduce market variability Symbolic Modeling for financial asset pricing Interpretable machine learning model for predicting activist investment targets Technical patterns and news sentiment in stock markets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1