{"title":"由采光技术支持的公共建筑的可持续性能","authors":"Berta Garcia-Fernandez , Osama Omar","doi":"10.1016/j.solener.2023.112068","DOIUrl":null,"url":null,"abstract":"<div><p>Many towns and villages around the world have implemented new technologies within lighting recently because there is an urgent need to save electricity, operational and maintenance costs. Taking into account recent global issues such as global warming, climate change, COVID-19 and increasing electricity bills, many countries have changed their plans for saving electricity by implementing more efficient, sustainable strategies. A global perspective and classification of the main lighting aspects necessary to implement sustainable daylight performance in public buildings is presented here. Qualitative research methodology is utilized in this article in order to clarify how daylighting strategies in public buildings contribute to the achievement of sustainable daylight performance. Objectives for achieving integrated pathways for sustainable development are detailed, related to natural lighting environment improvement, architecture, style and human health, and supported by a balanced organizational structure in order to achieve zero-energy buildings. The article also emphasizes the significance for the future of ensuring acceptable lighting through best lighting practices, providing advice through optimal lighting strategies in an efficient, realistic and responsible way. This lighting approach will serve to help in achieving nearly zero-energy buildings as a form of sustainably designed buildings. Finally, the article summarizes the most appropriate techniques for improving the daylight performance in public buildings, and an optimized human eyesight system is presented, based on the visual economy as a model of sustainability.</p></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"264 ","pages":"Article 112068"},"PeriodicalIF":6.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038092X23007028/pdfft?md5=c4f3249bf46d5bead6a2a2f3531a44dd&pid=1-s2.0-S0038092X23007028-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sustainable performance in public buildings supported by daylighting technology\",\"authors\":\"Berta Garcia-Fernandez , Osama Omar\",\"doi\":\"10.1016/j.solener.2023.112068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many towns and villages around the world have implemented new technologies within lighting recently because there is an urgent need to save electricity, operational and maintenance costs. Taking into account recent global issues such as global warming, climate change, COVID-19 and increasing electricity bills, many countries have changed their plans for saving electricity by implementing more efficient, sustainable strategies. A global perspective and classification of the main lighting aspects necessary to implement sustainable daylight performance in public buildings is presented here. Qualitative research methodology is utilized in this article in order to clarify how daylighting strategies in public buildings contribute to the achievement of sustainable daylight performance. Objectives for achieving integrated pathways for sustainable development are detailed, related to natural lighting environment improvement, architecture, style and human health, and supported by a balanced organizational structure in order to achieve zero-energy buildings. The article also emphasizes the significance for the future of ensuring acceptable lighting through best lighting practices, providing advice through optimal lighting strategies in an efficient, realistic and responsible way. This lighting approach will serve to help in achieving nearly zero-energy buildings as a form of sustainably designed buildings. Finally, the article summarizes the most appropriate techniques for improving the daylight performance in public buildings, and an optimized human eyesight system is presented, based on the visual economy as a model of sustainability.</p></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"264 \",\"pages\":\"Article 112068\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0038092X23007028/pdfft?md5=c4f3249bf46d5bead6a2a2f3531a44dd&pid=1-s2.0-S0038092X23007028-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X23007028\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X23007028","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Sustainable performance in public buildings supported by daylighting technology
Many towns and villages around the world have implemented new technologies within lighting recently because there is an urgent need to save electricity, operational and maintenance costs. Taking into account recent global issues such as global warming, climate change, COVID-19 and increasing electricity bills, many countries have changed their plans for saving electricity by implementing more efficient, sustainable strategies. A global perspective and classification of the main lighting aspects necessary to implement sustainable daylight performance in public buildings is presented here. Qualitative research methodology is utilized in this article in order to clarify how daylighting strategies in public buildings contribute to the achievement of sustainable daylight performance. Objectives for achieving integrated pathways for sustainable development are detailed, related to natural lighting environment improvement, architecture, style and human health, and supported by a balanced organizational structure in order to achieve zero-energy buildings. The article also emphasizes the significance for the future of ensuring acceptable lighting through best lighting practices, providing advice through optimal lighting strategies in an efficient, realistic and responsible way. This lighting approach will serve to help in achieving nearly zero-energy buildings as a form of sustainably designed buildings. Finally, the article summarizes the most appropriate techniques for improving the daylight performance in public buildings, and an optimized human eyesight system is presented, based on the visual economy as a model of sustainability.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass