21世纪初青藏高原不同冰川面积与高程变化

IF 3.3 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Anthropocene Pub Date : 2023-11-07 DOI:10.1016/j.ancene.2023.100419
Can Zhang , Weijie Ran , Shiming Fang , Shougeng Hu , Michael Beckmann , Martin Volk
{"title":"21世纪初青藏高原不同冰川面积与高程变化","authors":"Can Zhang ,&nbsp;Weijie Ran ,&nbsp;Shiming Fang ,&nbsp;Shougeng Hu ,&nbsp;Michael Beckmann ,&nbsp;Martin Volk","doi":"10.1016/j.ancene.2023.100419","DOIUrl":null,"url":null,"abstract":"<div><p>With accelerated warming, mountain glaciers in most parts of the world have been in a state of continuous retreat in recent decades. Assessing glacier change and analyzing its influencing factors are essential for developing climate change mitigation and adaptation measures for a given region. This study provides a spatially explicit assessment and quantification of glacier changes in the early 21st century on the Tibetan Plateau (TP) at individual glacier and basin scales. We established a one-to-one correspondence between the Second Chinese Glacier Inventory (CGI-2, collected from 2004 to 2011) and a dataset of glacier inventory in Western China during 2017–2018 (CGI-2018). The majority of TP’s glaciers decreased in size with a mean area retreat rate during the investigated period of 4.1%/decade. In addition, a mean change of the median elevation of the glaciers of 6.7 m/decade was detected. Approximately 2.5% of the total number of glaciers mapped in CGI-2 disappeared, while 681 of them divided to 1758 glaciers as they retreated. The observed variations follow local trends and have different regional characteristics. Generally, the glaciers with the lowest retreat rates are found in the Karakorum and Kunlun Mountains, while those with high retreat rates are concentrated along the Gangdis and Tangula ranges. The observed changes in glaciers are mainly attributed to a significant increase in temperature. Other factors including glacier size, debris cover, orientation and mean elevation also contribute to the heterogeneity of glacier variability. This study provides for the first time a detailed spatially explicit analysis of the glacial changes on the TP in the early 21st century, substantially improving the understanding of glacier response patterns and supporting more sustainable utilization of regional water resources in the TP in the context of climate warming in the 21st century.</p></div>","PeriodicalId":56021,"journal":{"name":"Anthropocene","volume":"44 ","pages":"Article 100419"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent glacier area and elevation changes across the Tibetan Plateau in the early 21st century\",\"authors\":\"Can Zhang ,&nbsp;Weijie Ran ,&nbsp;Shiming Fang ,&nbsp;Shougeng Hu ,&nbsp;Michael Beckmann ,&nbsp;Martin Volk\",\"doi\":\"10.1016/j.ancene.2023.100419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With accelerated warming, mountain glaciers in most parts of the world have been in a state of continuous retreat in recent decades. Assessing glacier change and analyzing its influencing factors are essential for developing climate change mitigation and adaptation measures for a given region. This study provides a spatially explicit assessment and quantification of glacier changes in the early 21st century on the Tibetan Plateau (TP) at individual glacier and basin scales. We established a one-to-one correspondence between the Second Chinese Glacier Inventory (CGI-2, collected from 2004 to 2011) and a dataset of glacier inventory in Western China during 2017–2018 (CGI-2018). The majority of TP’s glaciers decreased in size with a mean area retreat rate during the investigated period of 4.1%/decade. In addition, a mean change of the median elevation of the glaciers of 6.7 m/decade was detected. Approximately 2.5% of the total number of glaciers mapped in CGI-2 disappeared, while 681 of them divided to 1758 glaciers as they retreated. The observed variations follow local trends and have different regional characteristics. Generally, the glaciers with the lowest retreat rates are found in the Karakorum and Kunlun Mountains, while those with high retreat rates are concentrated along the Gangdis and Tangula ranges. The observed changes in glaciers are mainly attributed to a significant increase in temperature. Other factors including glacier size, debris cover, orientation and mean elevation also contribute to the heterogeneity of glacier variability. This study provides for the first time a detailed spatially explicit analysis of the glacial changes on the TP in the early 21st century, substantially improving the understanding of glacier response patterns and supporting more sustainable utilization of regional water resources in the TP in the context of climate warming in the 21st century.</p></div>\",\"PeriodicalId\":56021,\"journal\":{\"name\":\"Anthropocene\",\"volume\":\"44 \",\"pages\":\"Article 100419\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anthropocene\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213305423000528\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropocene","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213305423000528","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着气候变暖的加速,近几十年来,世界大部分地区的山地冰川一直处于不断退缩的状态。评估冰川变化并分析其影响因素对于制定特定区域的气候变化减缓和适应措施至关重要。本研究提供了21世纪初青藏高原冰川变化在单个冰川和流域尺度上的空间明确评价和量化。我们建立了2004 - 2011年中国第二次冰川清查(CGI-2)与2017-2018年中国西部冰川清查数据集(CGI-2018)之间的一一对应关系。在调查期间,青藏高原大部分冰川规模减小,平均面积退缩率为4.1%/ 10年。此外,冰川中位高程平均变化6.7 m/ a。在CGI-2中绘制的冰川总数中,约有2.5%消失了,其中681个冰川随着退缩而分裂为1758个冰川。观测到的变化符合局部趋势,并具有不同的区域特征。总体而言,退缩率最低的冰川分布在喀喇昆仑山和昆仑山,而退缩率最高的冰川则集中在甘底斯山脉和坦古拉山脉。观测到的冰川变化主要归因于温度的显著升高。其他因素包括冰川大小、碎屑覆盖、方向和平均海拔也有助于冰川变率的异质性。本研究首次对21世纪初青藏高原冰川变化进行了详细的空间分析,为21世纪气候变暖背景下青藏高原区域水资源的可持续利用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Divergent glacier area and elevation changes across the Tibetan Plateau in the early 21st century

With accelerated warming, mountain glaciers in most parts of the world have been in a state of continuous retreat in recent decades. Assessing glacier change and analyzing its influencing factors are essential for developing climate change mitigation and adaptation measures for a given region. This study provides a spatially explicit assessment and quantification of glacier changes in the early 21st century on the Tibetan Plateau (TP) at individual glacier and basin scales. We established a one-to-one correspondence between the Second Chinese Glacier Inventory (CGI-2, collected from 2004 to 2011) and a dataset of glacier inventory in Western China during 2017–2018 (CGI-2018). The majority of TP’s glaciers decreased in size with a mean area retreat rate during the investigated period of 4.1%/decade. In addition, a mean change of the median elevation of the glaciers of 6.7 m/decade was detected. Approximately 2.5% of the total number of glaciers mapped in CGI-2 disappeared, while 681 of them divided to 1758 glaciers as they retreated. The observed variations follow local trends and have different regional characteristics. Generally, the glaciers with the lowest retreat rates are found in the Karakorum and Kunlun Mountains, while those with high retreat rates are concentrated along the Gangdis and Tangula ranges. The observed changes in glaciers are mainly attributed to a significant increase in temperature. Other factors including glacier size, debris cover, orientation and mean elevation also contribute to the heterogeneity of glacier variability. This study provides for the first time a detailed spatially explicit analysis of the glacial changes on the TP in the early 21st century, substantially improving the understanding of glacier response patterns and supporting more sustainable utilization of regional water resources in the TP in the context of climate warming in the 21st century.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anthropocene
Anthropocene Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.30
自引率
0.00%
发文量
27
审稿时长
102 days
期刊介绍: Anthropocene is an interdisciplinary journal that publishes peer-reviewed works addressing the nature, scale, and extent of interactions that people have with Earth processes and systems. The scope of the journal includes the significance of human activities in altering Earth’s landscapes, oceans, the atmosphere, cryosphere, and ecosystems over a range of time and space scales - from global phenomena over geologic eras to single isolated events - including the linkages, couplings, and feedbacks among physical, chemical, and biological components of Earth systems. The journal also addresses how such alterations can have profound effects on, and implications for, human society. As the scale and pace of human interactions with Earth systems have intensified in recent decades, understanding human-induced alterations in the past and present is critical to our ability to anticipate, mitigate, and adapt to changes in the future. The journal aims to provide a venue to focus research findings, discussions, and debates toward advancing predictive understanding of human interactions with Earth systems - one of the grand challenges of our time.
期刊最新文献
Lead legacy of pre-industrial activities in lake sediments: The case study of the Lake Accesa (Southern Tuscany, Italy) Potential for redistribution of DwH-impacted bottom sediments to down-slope depocenters: Eastern Gulf of Mexico Human versus climate interactions on riverine flood characteristics in the largest Indian Peninsular basin Mining tailings severely impact plant communities in a rainforest watershed Effect of nutrient enrichment and climate change on historical changes of the cyanobacterial community in a shallow north temperate lake in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1