泊松分布的拟合优度检验及其在生物剂量学中的应用

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2020-04-01 DOI:10.1016/j.csda.2019.106878
Pedro Puig , Christian H. Weiß
{"title":"泊松分布的拟合优度检验及其在生物剂量学中的应用","authors":"Pedro Puig ,&nbsp;Christian H. Weiß","doi":"10.1016/j.csda.2019.106878","DOIUrl":null,"url":null,"abstract":"<div><p>New characterizations of the Poisson distribution based on an identity involving the Binomial thinning operator are presented. These characterizations allow the construction of statistics for testing the Poisson distribution against alternatives belonging to a large family called the LC-class, and against general alternatives. The usefulness and the power of the tests are illustrated with several examples of applications in Biodosimetry.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"144 ","pages":"Article 106878"},"PeriodicalIF":1.5000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csda.2019.106878","citationCount":"14","resultStr":"{\"title\":\"Some goodness-of-fit tests for the Poisson distribution with applications in Biodosimetry\",\"authors\":\"Pedro Puig ,&nbsp;Christian H. Weiß\",\"doi\":\"10.1016/j.csda.2019.106878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New characterizations of the Poisson distribution based on an identity involving the Binomial thinning operator are presented. These characterizations allow the construction of statistics for testing the Poisson distribution against alternatives belonging to a large family called the LC-class, and against general alternatives. The usefulness and the power of the tests are illustrated with several examples of applications in Biodosimetry.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"144 \",\"pages\":\"Article 106878\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csda.2019.106878\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947319302336\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947319302336","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 14

摘要

基于二项式稀疏算子的恒等给出了泊松分布的新表征。这些特征允许构建统计数据,以测试泊松分布对属于一个称为lc类的大族的替代,以及对一般替代。用几个在生物剂量学中的应用实例说明了这些测试的有用性和威力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Some goodness-of-fit tests for the Poisson distribution with applications in Biodosimetry

New characterizations of the Poisson distribution based on an identity involving the Binomial thinning operator are presented. These characterizations allow the construction of statistics for testing the Poisson distribution against alternatives belonging to a large family called the LC-class, and against general alternatives. The usefulness and the power of the tests are illustrated with several examples of applications in Biodosimetry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Editorial Board Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves Statistical modeling of Dengue transmission dynamics with environmental factors Analysis of order-of-addition experiments A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1