SARS-CoV-2刺突和ACE2缠结样结合。

IF 4.1 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Quantum Machine Intelligence Pub Date : 2023-01-01 DOI:10.1007/s42484-023-00098-0
Massimo Pregnolato, Paola Zizzi
{"title":"SARS-CoV-2刺突和ACE2缠结样结合。","authors":"Massimo Pregnolato,&nbsp;Paola Zizzi","doi":"10.1007/s42484-023-00098-0","DOIUrl":null,"url":null,"abstract":"<p><p>We describe the binding between the glycoprotein Spike of SARS-CoV-2 and the human host cell receptor ACE2 as a quantum circuit, comprising the one-qubit Hadamard quantum logic gate performing the quantum superposition of the S<sub>1</sub> subunit of the Spike protein, and the two-qubit quantum logic gate CNOT, which performs maximum entanglement between the Spike-qubit S<sub>1</sub> and the ACE2 receptor protein. Also, we consider two strategies to prevent the binding process between the Spike-qubit S<sub>1</sub> and the ACE2 receptor. The first one is the use of competitive peptidomimetic inhibitors that can selectively bind to the receptor binding domain (RBD) of the Spike glycoprotein with much higher affinity than the cell surface receptor itself. These inhibitors are targeted to the CNOT quantum logic gate and will get maximally entangled with the S<sub>1</sub> qubit in place of the natural ACE2 receptor. The second one is to use covalent inhibitors, which will destroy S<sub>1</sub> by acting as a projective quantum measurement. Finally, the conjecture that S<sub>1</sub> is a quantum bio-robot is formulated.</p>","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"5 1","pages":"8"},"PeriodicalIF":4.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882746/pdf/","citationCount":"1","resultStr":"{\"title\":\"SARS-CoV-2 spike and ACE2 entanglement-like binding.\",\"authors\":\"Massimo Pregnolato,&nbsp;Paola Zizzi\",\"doi\":\"10.1007/s42484-023-00098-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe the binding between the glycoprotein Spike of SARS-CoV-2 and the human host cell receptor ACE2 as a quantum circuit, comprising the one-qubit Hadamard quantum logic gate performing the quantum superposition of the S<sub>1</sub> subunit of the Spike protein, and the two-qubit quantum logic gate CNOT, which performs maximum entanglement between the Spike-qubit S<sub>1</sub> and the ACE2 receptor protein. Also, we consider two strategies to prevent the binding process between the Spike-qubit S<sub>1</sub> and the ACE2 receptor. The first one is the use of competitive peptidomimetic inhibitors that can selectively bind to the receptor binding domain (RBD) of the Spike glycoprotein with much higher affinity than the cell surface receptor itself. These inhibitors are targeted to the CNOT quantum logic gate and will get maximally entangled with the S<sub>1</sub> qubit in place of the natural ACE2 receptor. The second one is to use covalent inhibitors, which will destroy S<sub>1</sub> by acting as a projective quantum measurement. Finally, the conjecture that S<sub>1</sub> is a quantum bio-robot is formulated.</p>\",\"PeriodicalId\":29924,\"journal\":{\"name\":\"Quantum Machine Intelligence\",\"volume\":\"5 1\",\"pages\":\"8\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882746/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Machine Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42484-023-00098-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Machine Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42484-023-00098-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

我们将SARS-CoV-2糖蛋白Spike与人类宿主细胞受体ACE2之间的结合描述为一个量子电路,包括执行Spike蛋白S1亚基量子叠加的单量子比特Hadamard量子逻辑门,以及执行Spike-量子比特S1与ACE2受体蛋白之间最大纠缠的双量子比特量子逻辑门CNOT。此外,我们考虑了两种策略来阻止Spike-qubit S1与ACE2受体之间的结合过程。第一种是竞争性拟肽抑制剂的使用,这种抑制剂可以选择性地结合到Spike糖蛋白的受体结合域(RBD)上,其亲和力远高于细胞表面受体本身。这些抑制剂针对CNOT量子逻辑门,并将最大限度地与S1量子比特纠缠,以代替天然ACE2受体。第二种是使用共价抑制剂,它将通过充当投影量子测量来破坏S1。最后,提出了S1是量子生物机器人的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SARS-CoV-2 spike and ACE2 entanglement-like binding.

We describe the binding between the glycoprotein Spike of SARS-CoV-2 and the human host cell receptor ACE2 as a quantum circuit, comprising the one-qubit Hadamard quantum logic gate performing the quantum superposition of the S1 subunit of the Spike protein, and the two-qubit quantum logic gate CNOT, which performs maximum entanglement between the Spike-qubit S1 and the ACE2 receptor protein. Also, we consider two strategies to prevent the binding process between the Spike-qubit S1 and the ACE2 receptor. The first one is the use of competitive peptidomimetic inhibitors that can selectively bind to the receptor binding domain (RBD) of the Spike glycoprotein with much higher affinity than the cell surface receptor itself. These inhibitors are targeted to the CNOT quantum logic gate and will get maximally entangled with the S1 qubit in place of the natural ACE2 receptor. The second one is to use covalent inhibitors, which will destroy S1 by acting as a projective quantum measurement. Finally, the conjecture that S1 is a quantum bio-robot is formulated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
4.20%
发文量
29
期刊最新文献
Time series quantum classifiers with amplitude embedding Conditional generative models for learning stochastic processes Quantum convolutional neural networks for multi-channel supervised learning Interaction graph-based characterization of quantum benchmarks for improving quantum circuit mapping techniques Hybrid quantum ResNet for car classification and its hyperparameter optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1