粉防己碱通过SOD1/ROS信号通路抑制三阴性乳腺癌肿瘤干细胞特征和上皮向间质转化

IF 4.8 2区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE American Journal of Chinese Medicine Pub Date : 2023-01-01 DOI:10.1142/S0192415X23500222
Ting Liu, Kangdi Li, Zhenxing Zhang, Jinghui Peng, Jingzhao Yang, Betty Yuen Kwan Law, Xin Liu, Wenhua Li
{"title":"粉防己碱通过SOD1/ROS信号通路抑制三阴性乳腺癌肿瘤干细胞特征和上皮向间质转化","authors":"Ting Liu,&nbsp;Kangdi Li,&nbsp;Zhenxing Zhang,&nbsp;Jinghui Peng,&nbsp;Jingzhao Yang,&nbsp;Betty Yuen Kwan Law,&nbsp;Xin Liu,&nbsp;Wenhua Li","doi":"10.1142/S0192415X23500222","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting the stemness of triple-negative breast cancer (TNBC) is a potential therapeutic approach for treating TNBC. Tetrandrine, a natural plant alkaloid, has several anticancer effects. Here, we aimed to evaluate the efficacy of tetrandrine in cancer stemness and epithelial to mesenchymal transition (EMT) in TNBC, and to explore the underlying mechanisms. The effects of tetrandrine on cell growth, cell viability, cell stemness capacity, cell migration, and cell invasion, as well as the molecules involved in these processes, were investigated in a cell culture system. An <i>in vivo</i> xenograft tumor and lung metastasis study was performed using nude mice to verify the effects and mechanisms of tetrandrine. Tetrandrine exhibited antiproliferative and cell cycle arrest activities in TNBC cell lines, significantly reduced aldehyde dehydrogenase and CD44[Formula: see text]CD24[Formula: see text] characteristic subpopulation, and successfully prevented mammosphere formation. It suppressed migration and invasion, enhanced anoikis, and regulated the expression of proteins involved in the EMT, including E-cadherin, Vimentin, and Occludin, in both TNBC cells and MDA-MB-231 spheroid cells. Further studies revealed that tetrandrine downregulated the expression of superoxide dismutase 1 (SOD1) and catalase and induced reactive oxygen species (ROS) production, which subsequently contributed to the inhibition of cell EMT and stemness. The <i>in vivo</i> studies also showed that tetrandrine inhibited tumor growth and metastasis of both adherent normal cells, and flow cytometry sorted specific CD44[Formula: see text]CD24[Formula: see text] breast cancer stem cells, which could be rescued by SOD1 overexpression. The results of this study suggest that tetrandrine could effectively inhibit breast cancer stem cell characteristics and the EMT process via the SOD1/ROS signaling pathway. Therefore, tetrandrine can be considered a promising anti-TNBC agent.</p>","PeriodicalId":50814,"journal":{"name":"American Journal of Chinese Medicine","volume":"51 2","pages":"425-444"},"PeriodicalIF":4.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tetrandrine Inhibits Cancer Stem Cell Characteristics and Epithelial to Mesenchymal Transition in Triple-Negative Breast Cancer via SOD1/ROS Signaling Pathway.\",\"authors\":\"Ting Liu,&nbsp;Kangdi Li,&nbsp;Zhenxing Zhang,&nbsp;Jinghui Peng,&nbsp;Jingzhao Yang,&nbsp;Betty Yuen Kwan Law,&nbsp;Xin Liu,&nbsp;Wenhua Li\",\"doi\":\"10.1142/S0192415X23500222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeting the stemness of triple-negative breast cancer (TNBC) is a potential therapeutic approach for treating TNBC. Tetrandrine, a natural plant alkaloid, has several anticancer effects. Here, we aimed to evaluate the efficacy of tetrandrine in cancer stemness and epithelial to mesenchymal transition (EMT) in TNBC, and to explore the underlying mechanisms. The effects of tetrandrine on cell growth, cell viability, cell stemness capacity, cell migration, and cell invasion, as well as the molecules involved in these processes, were investigated in a cell culture system. An <i>in vivo</i> xenograft tumor and lung metastasis study was performed using nude mice to verify the effects and mechanisms of tetrandrine. Tetrandrine exhibited antiproliferative and cell cycle arrest activities in TNBC cell lines, significantly reduced aldehyde dehydrogenase and CD44[Formula: see text]CD24[Formula: see text] characteristic subpopulation, and successfully prevented mammosphere formation. It suppressed migration and invasion, enhanced anoikis, and regulated the expression of proteins involved in the EMT, including E-cadherin, Vimentin, and Occludin, in both TNBC cells and MDA-MB-231 spheroid cells. Further studies revealed that tetrandrine downregulated the expression of superoxide dismutase 1 (SOD1) and catalase and induced reactive oxygen species (ROS) production, which subsequently contributed to the inhibition of cell EMT and stemness. The <i>in vivo</i> studies also showed that tetrandrine inhibited tumor growth and metastasis of both adherent normal cells, and flow cytometry sorted specific CD44[Formula: see text]CD24[Formula: see text] breast cancer stem cells, which could be rescued by SOD1 overexpression. The results of this study suggest that tetrandrine could effectively inhibit breast cancer stem cell characteristics and the EMT process via the SOD1/ROS signaling pathway. Therefore, tetrandrine can be considered a promising anti-TNBC agent.</p>\",\"PeriodicalId\":50814,\"journal\":{\"name\":\"American Journal of Chinese Medicine\",\"volume\":\"51 2\",\"pages\":\"425-444\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X23500222\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S0192415X23500222","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 2

摘要

靶向三阴性乳腺癌(TNBC)的干细胞是治疗TNBC的一种潜在的治疗方法。粉防己碱是一种天然的植物生物碱,具有多种抗癌作用。在此,我们旨在评估粉防己碱在TNBC癌症干细胞和上皮细胞向间质转化(EMT)中的作用,并探讨其潜在机制。在细胞培养系统中研究了粉防己碱对细胞生长、细胞活力、细胞干性、细胞迁移和细胞侵袭的影响,以及参与这些过程的分子。为了验证粉防己碱的作用和作用机制,我们用裸鼠进行了体内移植肿瘤和肺转移的研究。粉防己碱在TNBC细胞系中表现出抗增殖和细胞周期阻滞活性,显著降低醛脱氢酶和CD44[公式:见文]CD24[公式:见文]特征亚群,并成功阻止乳腺球形成。在TNBC细胞和MDA-MB-231球形细胞中,它抑制迁移和侵袭,增强免疫,并调节EMT相关蛋白的表达,包括E-cadherin, Vimentin和Occludin。进一步的研究表明,粉防己碱下调超氧化物歧化酶1 (SOD1)和过氧化氢酶的表达,诱导活性氧(ROS)的产生,从而抑制细胞EMT和干性。体内研究也显示粉防己碱对贴壁正常细胞的肿瘤生长和转移均有抑制作用,流式细胞术对特异性CD44[公式:见文]CD24[公式:见文]乳腺癌干细胞进行了分选,可通过SOD1过表达对其进行拯救。本研究结果提示粉防己碱可通过SOD1/ROS信号通路有效抑制乳腺癌干细胞特征及EMT过程。因此,粉防己碱可以被认为是一种很有前途的抗tnbc药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tetrandrine Inhibits Cancer Stem Cell Characteristics and Epithelial to Mesenchymal Transition in Triple-Negative Breast Cancer via SOD1/ROS Signaling Pathway.

Targeting the stemness of triple-negative breast cancer (TNBC) is a potential therapeutic approach for treating TNBC. Tetrandrine, a natural plant alkaloid, has several anticancer effects. Here, we aimed to evaluate the efficacy of tetrandrine in cancer stemness and epithelial to mesenchymal transition (EMT) in TNBC, and to explore the underlying mechanisms. The effects of tetrandrine on cell growth, cell viability, cell stemness capacity, cell migration, and cell invasion, as well as the molecules involved in these processes, were investigated in a cell culture system. An in vivo xenograft tumor and lung metastasis study was performed using nude mice to verify the effects and mechanisms of tetrandrine. Tetrandrine exhibited antiproliferative and cell cycle arrest activities in TNBC cell lines, significantly reduced aldehyde dehydrogenase and CD44[Formula: see text]CD24[Formula: see text] characteristic subpopulation, and successfully prevented mammosphere formation. It suppressed migration and invasion, enhanced anoikis, and regulated the expression of proteins involved in the EMT, including E-cadherin, Vimentin, and Occludin, in both TNBC cells and MDA-MB-231 spheroid cells. Further studies revealed that tetrandrine downregulated the expression of superoxide dismutase 1 (SOD1) and catalase and induced reactive oxygen species (ROS) production, which subsequently contributed to the inhibition of cell EMT and stemness. The in vivo studies also showed that tetrandrine inhibited tumor growth and metastasis of both adherent normal cells, and flow cytometry sorted specific CD44[Formula: see text]CD24[Formula: see text] breast cancer stem cells, which could be rescued by SOD1 overexpression. The results of this study suggest that tetrandrine could effectively inhibit breast cancer stem cell characteristics and the EMT process via the SOD1/ROS signaling pathway. Therefore, tetrandrine can be considered a promising anti-TNBC agent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Chinese Medicine
American Journal of Chinese Medicine 医学-全科医学与补充医学
CiteScore
9.90
自引率
8.80%
发文量
159
审稿时长
4.5 months
期刊介绍: The American Journal of Chinese Medicine, which is defined in its broadest sense possible, publishes original articles and essays relating to traditional or ethnomedicine of all cultures. Areas of particular interest include: Basic scientific and clinical research in indigenous medical techniques, therapeutic procedures, medicinal plants, and traditional medical theories and concepts; Multidisciplinary study of medical practice and health care, especially from historical, cultural, public health, and socioeconomic perspectives; International policy implications of comparative studies of medicine in all cultures, including such issues as health in developing countries, affordability and transferability of health-care techniques and concepts; Translating scholarly ancient texts or modern publications on ethnomedicine. The American Journal of Chinese Medicine will consider for publication a broad range of scholarly contributions, including original scientific research papers, review articles, editorial comments, social policy statements, brief news items, bibliographies, research guides, letters to the editors, book reviews, and selected reprints.
期刊最新文献
Acupuncture and Acupoints for Low Back Pain: Systematic Review and Meta-Analysis. Standardized Extract of Centella asiatica Prevents Fear Memory Deficit in 3xTg-AD Mice. Biometrics Data Visualization of Ginsenosides in Anticancer Investigations. 20(S)-Protopanaxadiol from Panax ginseng Induces Apoptosis and Autophagy in Gastric Cancer Cells by Inhibiting Src. Acupuncture for Fibromyalgia: A Review Based on Multidimensional Evidence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1