揭示了环氧-玉米芯纳米复合涂层在混酸环境下的多方位结合

IF 2.218 Q2 Chemistry Chemical Data Collections Pub Date : 2023-11-07 DOI:10.1016/j.cdc.2023.101097
Victor Sunday Aigbodion
{"title":"揭示了环氧-玉米芯纳米复合涂层在混酸环境下的多方位结合","authors":"Victor Sunday Aigbodion","doi":"10.1016/j.cdc.2023.101097","DOIUrl":null,"url":null,"abstract":"<div><p>The surface components of mild steel used in field applications are always subject to wear and corrosion attacks. Epoxy coatings serve to improve the surface properties of mild steel; nonetheless, they do not deliver a multiplexed advantage compared to their coating with inert non-metallic particles. The parametric addition of maize cob ash nanoparticles modified with 0.5 wt% silver nanoparticles in the epoxy coating of mild steel was investigated. The coating was done using the spraying method. The transmission and scanning electron microscope, X-ray diffraction and electrochemical test in mixed acid environment were used in the characterization of the developed composites coating. A 42.86 and 96.16 % improvement in hardness values and corrosion resistance of mild steel was obtained at modified 8 wt% maize cob ash nanoparticles/epoxy coating. The corrosion potential of the coated samples tends to be higher, whereas that of the uncoated mild steel is lower. This study demonstrates that epoxy-8 wt% maize cob ash nanoparticles modified with 0.5 wt% silver nanoparticles can be used to enhance the anti-corrosion of mild steel in a mixed acid environment.</p></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"48 ","pages":"Article 101097"},"PeriodicalIF":2.2180,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the multifaceted incorporation of epoxy-maize cob nanoparticle composite coating of mild steel in mixed acid environment\",\"authors\":\"Victor Sunday Aigbodion\",\"doi\":\"10.1016/j.cdc.2023.101097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The surface components of mild steel used in field applications are always subject to wear and corrosion attacks. Epoxy coatings serve to improve the surface properties of mild steel; nonetheless, they do not deliver a multiplexed advantage compared to their coating with inert non-metallic particles. The parametric addition of maize cob ash nanoparticles modified with 0.5 wt% silver nanoparticles in the epoxy coating of mild steel was investigated. The coating was done using the spraying method. The transmission and scanning electron microscope, X-ray diffraction and electrochemical test in mixed acid environment were used in the characterization of the developed composites coating. A 42.86 and 96.16 % improvement in hardness values and corrosion resistance of mild steel was obtained at modified 8 wt% maize cob ash nanoparticles/epoxy coating. The corrosion potential of the coated samples tends to be higher, whereas that of the uncoated mild steel is lower. This study demonstrates that epoxy-8 wt% maize cob ash nanoparticles modified with 0.5 wt% silver nanoparticles can be used to enhance the anti-corrosion of mild steel in a mixed acid environment.</p></div>\",\"PeriodicalId\":269,\"journal\":{\"name\":\"Chemical Data Collections\",\"volume\":\"48 \",\"pages\":\"Article 101097\"},\"PeriodicalIF\":2.2180,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Data Collections\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405830023001088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Data Collections","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405830023001088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

在现场应用中使用的低碳钢的表面成分总是受到磨损和腐蚀。环氧涂料用于改善低碳钢的表面性能;然而,与惰性非金属颗粒涂层相比,它们并没有提供多路复用的优势。研究了0.5 wt%银纳米粒子改性玉米芯灰纳米粒子在低碳钢环氧涂层中的参数添加。采用喷涂法进行涂层处理。采用透射电镜、扫描电镜、x射线衍射和混合酸环境下的电化学测试对制备的复合涂层进行了表征。改性后的玉米芯灰/环氧涂层的硬度和耐蚀性分别提高了42.86%和96.16%。涂层试样的腐蚀电位较高,而未涂层试样的腐蚀电位较低。本研究表明,用0.5 wt%银纳米粒子修饰环氧-8 wt%玉米芯灰纳米粒子可以增强低碳钢在混合酸环境中的抗腐蚀能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the multifaceted incorporation of epoxy-maize cob nanoparticle composite coating of mild steel in mixed acid environment

The surface components of mild steel used in field applications are always subject to wear and corrosion attacks. Epoxy coatings serve to improve the surface properties of mild steel; nonetheless, they do not deliver a multiplexed advantage compared to their coating with inert non-metallic particles. The parametric addition of maize cob ash nanoparticles modified with 0.5 wt% silver nanoparticles in the epoxy coating of mild steel was investigated. The coating was done using the spraying method. The transmission and scanning electron microscope, X-ray diffraction and electrochemical test in mixed acid environment were used in the characterization of the developed composites coating. A 42.86 and 96.16 % improvement in hardness values and corrosion resistance of mild steel was obtained at modified 8 wt% maize cob ash nanoparticles/epoxy coating. The corrosion potential of the coated samples tends to be higher, whereas that of the uncoated mild steel is lower. This study demonstrates that epoxy-8 wt% maize cob ash nanoparticles modified with 0.5 wt% silver nanoparticles can be used to enhance the anti-corrosion of mild steel in a mixed acid environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Data Collections
Chemical Data Collections Chemistry-Chemistry (all)
CiteScore
6.10
自引率
0.00%
发文量
169
审稿时长
24 days
期刊介绍: Chemical Data Collections (CDC) provides a publication outlet for the increasing need to make research material and data easy to share and re-use. Publication of research data with CDC will allow scientists to: -Make their data easy to find and access -Benefit from the fast publication process -Contribute to proper data citation and attribution -Publish their intermediate and null/negative results -Receive recognition for the work that does not fit traditional article format. The research data will be published as ''data articles'' that support fast and easy submission and quick peer-review processes. Data articles introduced by CDC are short self-contained publications about research materials and data. They must provide the scientific context of the described work and contain the following elements: a title, list of authors (plus affiliations), abstract, keywords, graphical abstract, metadata table, main text and at least three references. The journal welcomes submissions focusing on (but not limited to) the following categories of research output: spectral data, syntheses, crystallographic data, computational simulations, molecular dynamics and models, physicochemical data, etc.
期刊最新文献
One-pot synthesis of multifunctional magnetic activated carbon from fallen saman leaves to activate persulfate for acid red 18 degradation Interfacial properties, and micellization of surface-active ionic liquid in presence of polymeric solutions Design, synthesis, characterization, invitro anticancer evaluation, computational studies, and in silico ADME assessment of New N-(5-o-tolyl-1,3,4-oxadiazol-2-yl) alkanamides Chemical characterization, antioxidant activity and toxicity of sugars present in Annona cornifolia (Annonaceae) seeds A rapid, efficient microwave-assisted synthesis of novel bis-pyrazole analogues using non-toxic and cost-effective catalyst under green solvent medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1