基于单光子探测器阵列和时间-数字转换器的高效随机数生成技术的验证

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY IET Quantum Communication Pub Date : 2021-08-27 DOI:10.1049/qtc2.12018
Andrea Stanco, Davide G. Marangon, Giuseppe Vallone, Samuel Burri, Edoardo Charbon, Paolo Villoresi
{"title":"基于单光子探测器阵列和时间-数字转换器的高效随机数生成技术的验证","authors":"Andrea Stanco,&nbsp;Davide G. Marangon,&nbsp;Giuseppe Vallone,&nbsp;Samuel Burri,&nbsp;Edoardo Charbon,&nbsp;Paolo Villoresi","doi":"10.1049/qtc2.12018","DOIUrl":null,"url":null,"abstract":"<p>True random number generators (TRNGs) allow the generation of true random bit sequences, guaranteeing the unpredictability and perfect balancing of the generated values. TRNGs can be realised from the sampling of quantum phenomena, for instance, the detection of single photons. Here, a recently proposed technique, which implements a quantum random number generator (QRNG) out of a device that was realised for a different scope, is further analysed and certified [1]. The combination of a CMOS single-photon avalanche diode (SPAD) array, a high-resolution time-to-digital converter (TDC) implemented on a field programmable gate array (FPGA), the exploitation of a single-photon temporal degree of freedom, and an unbiased procedure provided by H. Zhou and J. Bruck [2, 3] allows the generation of true random bits with a high bitrate in a compact and easy-to-calibrate device. Indeed, the use of the ‘Zhou–Bruck’ method allows the removal of any correlation from the binary representation of decimal data. This perfectly fits with the usage of a device with non-idealities like SPAD's afterpulses, pixel cross-correlation, and time-to-digital converter non-uniform conversion. In this work, an in-depth analysis and certification of the technique presented in [1] is provided by processing the data with the NIST suite tests in order to prove the effectiveness and validity of this approach.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"2 3","pages":"74-79"},"PeriodicalIF":2.5000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12018","citationCount":"0","resultStr":"{\"title\":\"Certification of the efficient random number generation technique based on single-photon detector arrays and time-to-digital converters\",\"authors\":\"Andrea Stanco,&nbsp;Davide G. Marangon,&nbsp;Giuseppe Vallone,&nbsp;Samuel Burri,&nbsp;Edoardo Charbon,&nbsp;Paolo Villoresi\",\"doi\":\"10.1049/qtc2.12018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>True random number generators (TRNGs) allow the generation of true random bit sequences, guaranteeing the unpredictability and perfect balancing of the generated values. TRNGs can be realised from the sampling of quantum phenomena, for instance, the detection of single photons. Here, a recently proposed technique, which implements a quantum random number generator (QRNG) out of a device that was realised for a different scope, is further analysed and certified [1]. The combination of a CMOS single-photon avalanche diode (SPAD) array, a high-resolution time-to-digital converter (TDC) implemented on a field programmable gate array (FPGA), the exploitation of a single-photon temporal degree of freedom, and an unbiased procedure provided by H. Zhou and J. Bruck [2, 3] allows the generation of true random bits with a high bitrate in a compact and easy-to-calibrate device. Indeed, the use of the ‘Zhou–Bruck’ method allows the removal of any correlation from the binary representation of decimal data. This perfectly fits with the usage of a device with non-idealities like SPAD's afterpulses, pixel cross-correlation, and time-to-digital converter non-uniform conversion. In this work, an in-depth analysis and certification of the technique presented in [1] is provided by processing the data with the NIST suite tests in order to prove the effectiveness and validity of this approach.</p>\",\"PeriodicalId\":100651,\"journal\":{\"name\":\"IET Quantum Communication\",\"volume\":\"2 3\",\"pages\":\"74-79\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Quantum Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真正的随机数生成器(trng)允许生成真正的随机位序列,保证了生成值的不可预测性和完美的平衡性。trng可以通过对量子现象的采样来实现,例如,对单光子的探测。在这里,最近提出的一种技术,它实现了一个量子随机数发生器(QRNG)的设备,实现了不同的范围,进一步分析和认证[1]。结合CMOS单光子雪崩二极管(SPAD)阵列,在现场可编程门阵列(FPGA)上实现的高分辨率时间-数字转换器(TDC),利用单光子时间自由度,以及H. Zhou和J. Bruck[2,3]提供的无偏程序,可以在紧凑且易于校准的设备中生成具有高比特率的真正随机位。实际上,使用“Zhou-Bruck”方法可以从十进制数据的二进制表示中去除任何相关性。这完全适合非理想器件的使用,如SPAD的后脉冲、像素互相关和时间-数字转换器的非均匀转换。在这项工作中,通过使用NIST套件测试处理数据,对[1]中提出的技术进行了深入的分析和认证,以证明该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Certification of the efficient random number generation technique based on single-photon detector arrays and time-to-digital converters

True random number generators (TRNGs) allow the generation of true random bit sequences, guaranteeing the unpredictability and perfect balancing of the generated values. TRNGs can be realised from the sampling of quantum phenomena, for instance, the detection of single photons. Here, a recently proposed technique, which implements a quantum random number generator (QRNG) out of a device that was realised for a different scope, is further analysed and certified [1]. The combination of a CMOS single-photon avalanche diode (SPAD) array, a high-resolution time-to-digital converter (TDC) implemented on a field programmable gate array (FPGA), the exploitation of a single-photon temporal degree of freedom, and an unbiased procedure provided by H. Zhou and J. Bruck [2, 3] allows the generation of true random bits with a high bitrate in a compact and easy-to-calibrate device. Indeed, the use of the ‘Zhou–Bruck’ method allows the removal of any correlation from the binary representation of decimal data. This perfectly fits with the usage of a device with non-idealities like SPAD's afterpulses, pixel cross-correlation, and time-to-digital converter non-uniform conversion. In this work, an in-depth analysis and certification of the technique presented in [1] is provided by processing the data with the NIST suite tests in order to prove the effectiveness and validity of this approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Quantum teleportation in higher dimension and entanglement distribution via quantum switches Real-time seedless post-processing for quantum random number generators Quantum blockchain: Trends, technologies, and future directions Quantum anonymous one vote veto protocol based on entanglement swapping Enhanced QSVM with elitist non-dominated sorting genetic optimisation algorithm for breast cancer diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1