Haleh Farahbod, Corianne Rogalsky, Lynsey M Keator, Julia Cai, Sara B Pillay, Katie Turner, Arianna LaCroix, Julius Fridriksson, Jeffrey R Binder, John C Middlebrooks, Gregory Hickok, Kourosh Saberi
{"title":"衰老和脑损伤个体的信息掩蔽。","authors":"Haleh Farahbod, Corianne Rogalsky, Lynsey M Keator, Julia Cai, Sara B Pillay, Katie Turner, Arianna LaCroix, Julius Fridriksson, Jeffrey R Binder, John C Middlebrooks, Gregory Hickok, Kourosh Saberi","doi":"10.1007/s10162-022-00877-9","DOIUrl":null,"url":null,"abstract":"<p><p>Auditory stream segregation and informational masking were investigated in brain-lesioned individuals, age-matched controls with no neurological disease, and young college-age students. A psychophysical paradigm known as rhythmic masking release (RMR) was used to examine the ability of participants to identify a change in the rhythmic sequence of 20-ms Gaussian noise bursts presented through headphones and filtered through generalized head-related transfer functions to produce the percept of an externalized auditory image (i.e., a 3D virtual reality sound). The target rhythm was temporally interleaved with a masker sequence comprising similar noise bursts in a manner that resulted in a uniform sequence with no information remaining about the target rhythm when the target and masker were presented from the same location (an impossible task). Spatially separating the target and masker sequences allowed participants to determine if there was a change in the target rhythm midway during its presentation. RMR thresholds were defined as the minimum spatial separation between target and masker sequences that resulted in 70.7% correct-performance level in a single-interval 2-alternative forced-choice adaptive tracking procedure. The main findings were (1) significantly higher RMR thresholds for individuals with brain lesions (especially those with damage to parietal areas) and (2) a left-right spatial asymmetry in performance for lesion (but not control) participants. These findings contribute to a better understanding of spatiotemporal relations in informational masking and the neural bases of auditory scene analysis.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 1","pages":"67-79"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971540/pdf/","citationCount":"3","resultStr":"{\"title\":\"Informational Masking in Aging and Brain-lesioned Individuals.\",\"authors\":\"Haleh Farahbod, Corianne Rogalsky, Lynsey M Keator, Julia Cai, Sara B Pillay, Katie Turner, Arianna LaCroix, Julius Fridriksson, Jeffrey R Binder, John C Middlebrooks, Gregory Hickok, Kourosh Saberi\",\"doi\":\"10.1007/s10162-022-00877-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Auditory stream segregation and informational masking were investigated in brain-lesioned individuals, age-matched controls with no neurological disease, and young college-age students. A psychophysical paradigm known as rhythmic masking release (RMR) was used to examine the ability of participants to identify a change in the rhythmic sequence of 20-ms Gaussian noise bursts presented through headphones and filtered through generalized head-related transfer functions to produce the percept of an externalized auditory image (i.e., a 3D virtual reality sound). The target rhythm was temporally interleaved with a masker sequence comprising similar noise bursts in a manner that resulted in a uniform sequence with no information remaining about the target rhythm when the target and masker were presented from the same location (an impossible task). Spatially separating the target and masker sequences allowed participants to determine if there was a change in the target rhythm midway during its presentation. RMR thresholds were defined as the minimum spatial separation between target and masker sequences that resulted in 70.7% correct-performance level in a single-interval 2-alternative forced-choice adaptive tracking procedure. The main findings were (1) significantly higher RMR thresholds for individuals with brain lesions (especially those with damage to parietal areas) and (2) a left-right spatial asymmetry in performance for lesion (but not control) participants. These findings contribute to a better understanding of spatiotemporal relations in informational masking and the neural bases of auditory scene analysis.</p>\",\"PeriodicalId\":56283,\"journal\":{\"name\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"volume\":\"24 1\",\"pages\":\"67-79\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971540/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10162-022-00877-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-022-00877-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Informational Masking in Aging and Brain-lesioned Individuals.
Auditory stream segregation and informational masking were investigated in brain-lesioned individuals, age-matched controls with no neurological disease, and young college-age students. A psychophysical paradigm known as rhythmic masking release (RMR) was used to examine the ability of participants to identify a change in the rhythmic sequence of 20-ms Gaussian noise bursts presented through headphones and filtered through generalized head-related transfer functions to produce the percept of an externalized auditory image (i.e., a 3D virtual reality sound). The target rhythm was temporally interleaved with a masker sequence comprising similar noise bursts in a manner that resulted in a uniform sequence with no information remaining about the target rhythm when the target and masker were presented from the same location (an impossible task). Spatially separating the target and masker sequences allowed participants to determine if there was a change in the target rhythm midway during its presentation. RMR thresholds were defined as the minimum spatial separation between target and masker sequences that resulted in 70.7% correct-performance level in a single-interval 2-alternative forced-choice adaptive tracking procedure. The main findings were (1) significantly higher RMR thresholds for individuals with brain lesions (especially those with damage to parietal areas) and (2) a left-right spatial asymmetry in performance for lesion (but not control) participants. These findings contribute to a better understanding of spatiotemporal relations in informational masking and the neural bases of auditory scene analysis.
期刊介绍:
JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance.
Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.