ANCOVA和差中差设计的效应量

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2023-01-02 DOI:10.1111/bmsp.12296
Larry V. Hedges, Elizabeth Tipton, Rrita Zejnullahi, Karina G. Diaz
{"title":"ANCOVA和差中差设计的效应量","authors":"Larry V. Hedges,&nbsp;Elizabeth Tipton,&nbsp;Rrita Zejnullahi,&nbsp;Karina G. Diaz","doi":"10.1111/bmsp.12296","DOIUrl":null,"url":null,"abstract":"<p>It is common practice in both randomized and quasi-experiments to adjust for baseline characteristics when estimating the average effect of an intervention. The inclusion of a pre-test, for example, can reduce both the standard error of this estimate and—in non-randomized designs—its bias. At the same time, it is also standard to report the effect of an intervention in standardized effect size units, thereby making it comparable to other interventions and studies. Curiously, the estimation of this effect size, including covariate adjustment, has received little attention. In this article, we provide a framework for defining effect sizes in designs with a pre-test (e.g., difference-in-differences and analysis of covariance) and propose estimators of those effect sizes. The estimators and approximations to their sampling distributions are evaluated using a simulation study and then demonstrated using an example from published data.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"76 2","pages":"259-282"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect sizes in ANCOVA and difference-in-differences designs\",\"authors\":\"Larry V. Hedges,&nbsp;Elizabeth Tipton,&nbsp;Rrita Zejnullahi,&nbsp;Karina G. Diaz\",\"doi\":\"10.1111/bmsp.12296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is common practice in both randomized and quasi-experiments to adjust for baseline characteristics when estimating the average effect of an intervention. The inclusion of a pre-test, for example, can reduce both the standard error of this estimate and—in non-randomized designs—its bias. At the same time, it is also standard to report the effect of an intervention in standardized effect size units, thereby making it comparable to other interventions and studies. Curiously, the estimation of this effect size, including covariate adjustment, has received little attention. In this article, we provide a framework for defining effect sizes in designs with a pre-test (e.g., difference-in-differences and analysis of covariance) and propose estimators of those effect sizes. The estimators and approximations to their sampling distributions are evaluated using a simulation study and then demonstrated using an example from published data.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"76 2\",\"pages\":\"259-282\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12296\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12296","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

在随机和准实验中,在估计干预的平均效果时调整基线特征是常见的做法。例如,包含预测试可以减少估计的标准误差,并且在非随机设计中减少其偏差。同时,以标准化效应大小单位报告干预措施的效果也是标准的,从而使其与其他干预措施和研究具有可比性。奇怪的是,这个效应大小的估计,包括协变量调整,很少受到关注。在本文中,我们提供了一个框架,用于定义具有预测试的设计中的效应大小(例如,差异中的差异和协方差分析),并提出了这些效应大小的估计器。通过模拟研究对其抽样分布的估计量和近似值进行了评估,然后使用已发表数据中的示例进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect sizes in ANCOVA and difference-in-differences designs

It is common practice in both randomized and quasi-experiments to adjust for baseline characteristics when estimating the average effect of an intervention. The inclusion of a pre-test, for example, can reduce both the standard error of this estimate and—in non-randomized designs—its bias. At the same time, it is also standard to report the effect of an intervention in standardized effect size units, thereby making it comparable to other interventions and studies. Curiously, the estimation of this effect size, including covariate adjustment, has received little attention. In this article, we provide a framework for defining effect sizes in designs with a pre-test (e.g., difference-in-differences and analysis of covariance) and propose estimators of those effect sizes. The estimators and approximations to their sampling distributions are evaluated using a simulation study and then demonstrated using an example from published data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
A new Q-matrix validation method based on signal detection theory. Discriminability around polytomous knowledge structures and polytomous functions. Understanding linear interaction analysis with causal graphs. Identifiability analysis of the fixed-effects one-parameter logistic positive exponent model. Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1