组织病理学领域半监督和自我监督学习方法的研究

Benjamin Voigt , Oliver Fischer , Bruno Schilling , Christian Krumnow , Christian Herta
{"title":"组织病理学领域半监督和自我监督学习方法的研究","authors":"Benjamin Voigt ,&nbsp;Oliver Fischer ,&nbsp;Bruno Schilling ,&nbsp;Christian Krumnow ,&nbsp;Christian Herta","doi":"10.1016/j.jpi.2023.100305","DOIUrl":null,"url":null,"abstract":"<div><p>Training models with semi- or self-supervised learning methods is one way to reduce annotation effort since they rely on unlabeled or sparsely labeled datasets. Such approaches are particularly promising for domains with a time-consuming annotation process requiring specialized expertise and where high-quality labeled machine learning datasets are scarce, like in computational pathology. Even though some of these methods have been used in the histopathological domain, there is, so far, no comprehensive study comparing different approaches. Therefore, this work compares feature extractors models trained with state-of-the-art semi- or self-supervised learning methods PAWS, SimCLR, and SimSiam within a unified framework. We show that such models, across different architectures and network configurations, have a positive performance impact on histopathological classification tasks, even in low data regimes. Moreover, our observations suggest that features learned from a particular dataset, i.e., tissue type, are only in-domain transferable to a certain extent. Finally, we share our experience using each method in computational pathology and provide recommendations for its use.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070179/pdf/main.pdf","citationCount":"3","resultStr":"{\"title\":\"Investigation of semi- and self-supervised learning methods in the histopathological domain\",\"authors\":\"Benjamin Voigt ,&nbsp;Oliver Fischer ,&nbsp;Bruno Schilling ,&nbsp;Christian Krumnow ,&nbsp;Christian Herta\",\"doi\":\"10.1016/j.jpi.2023.100305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Training models with semi- or self-supervised learning methods is one way to reduce annotation effort since they rely on unlabeled or sparsely labeled datasets. Such approaches are particularly promising for domains with a time-consuming annotation process requiring specialized expertise and where high-quality labeled machine learning datasets are scarce, like in computational pathology. Even though some of these methods have been used in the histopathological domain, there is, so far, no comprehensive study comparing different approaches. Therefore, this work compares feature extractors models trained with state-of-the-art semi- or self-supervised learning methods PAWS, SimCLR, and SimSiam within a unified framework. We show that such models, across different architectures and network configurations, have a positive performance impact on histopathological classification tasks, even in low data regimes. Moreover, our observations suggest that features learned from a particular dataset, i.e., tissue type, are only in-domain transferable to a certain extent. Finally, we share our experience using each method in computational pathology and provide recommendations for its use.</p></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070179/pdf/main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353923001190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353923001190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

摘要

使用半监督或自监督学习方法训练模型是减少标注工作量的一种方法,因为它们依赖于未标记或稀疏标记的数据集。这种方法特别适用于需要专业知识的耗时标注过程和高质量标记机器学习数据集稀缺的领域,如计算病理学。尽管其中一些方法已被用于组织病理学领域,但到目前为止,还没有对不同方法进行比较的全面研究。因此,这项工作比较了在统一框架内使用最先进的半监督或自监督学习方法PAWS、SimCLR和SimSiam训练的特征提取器模型。我们表明,这种模型,跨越不同的架构和网络配置,对组织病理学分类任务具有积极的性能影响,即使在低数据体制下也是如此。此外,我们的观察表明,从特定数据集中学习的特征,即组织类型,只能在一定程度上在域内转移。最后,我们分享了我们在计算病理学中使用每种方法的经验,并提出了使用建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of semi- and self-supervised learning methods in the histopathological domain

Training models with semi- or self-supervised learning methods is one way to reduce annotation effort since they rely on unlabeled or sparsely labeled datasets. Such approaches are particularly promising for domains with a time-consuming annotation process requiring specialized expertise and where high-quality labeled machine learning datasets are scarce, like in computational pathology. Even though some of these methods have been used in the histopathological domain, there is, so far, no comprehensive study comparing different approaches. Therefore, this work compares feature extractors models trained with state-of-the-art semi- or self-supervised learning methods PAWS, SimCLR, and SimSiam within a unified framework. We show that such models, across different architectures and network configurations, have a positive performance impact on histopathological classification tasks, even in low data regimes. Moreover, our observations suggest that features learned from a particular dataset, i.e., tissue type, are only in-domain transferable to a certain extent. Finally, we share our experience using each method in computational pathology and provide recommendations for its use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pathology Informatics
Journal of Pathology Informatics Medicine-Pathology and Forensic Medicine
CiteScore
3.70
自引率
0.00%
发文量
2
审稿时长
18 weeks
期刊介绍: The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.
期刊最新文献
Digital mapping of resected cancer specimens: The visual pathology report A precise machine learning model: Detecting cervical cancer using feature selection and explainable AI ViCE: An automated and quantitative program to assess intestinal tissue morphology Deep feature batch correction using ComBat for machine learning applications in computational pathology LVI-PathNet: Segmentation-classification pipeline for detection of lymphovascular invasion in whole slide images of lung adenocarcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1