条件依赖与缺失可塑性成本悖论。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-04-01 DOI:10.1093/evlett/qrad009
Stephen P De Lisle, Locke Rowe
{"title":"条件依赖与缺失可塑性成本悖论。","authors":"Stephen P De Lisle,&nbsp;Locke Rowe","doi":"10.1093/evlett/qrad009","DOIUrl":null,"url":null,"abstract":"<p><p>Phenotypic plasticity plays a key role in adaptation to changing environments. However, plasticity is neither perfect nor ubiquitous, implying that fitness costs may limit the evolution of phenotypic plasticity in nature. The measurement of such costs of plasticity has proved elusive; decades of experiments show that fitness costs of plasticity are often weak or nonexistent. Here, we show that this paradox could potentially be explained by condition dependence. We develop two models differing in their assumptions about how condition dependence arises; both models show that variation in condition can readily mask costs of plasticity even when such costs are substantial. This can be shown simply in a model where plasticity itself evolves condition dependence, which would be expected if costly. Yet similar effects emerge from an alternative model where trait expression itself is condition-dependent. In this more complex model, the average condition in each environment and genetic covariance in condition across environments both determine when costs of plasticity can be revealed. Analogous to the paradox of missing trade-offs between life history traits, our models show that variation in condition can mask costs of plasticity even when costs exist, and suggest this conclusion may be robust to the details of how condition affects trait expression. Our models suggest that condition dependence can also account for the often-observed pattern of elevated plasticity costs inferred in stressful environments, the maintenance of genetic variance in plasticity, and provides insight into experimental and biological scenarios ideal for revealing a cost of phenotypic plasticity.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078974/pdf/","citationCount":"1","resultStr":"{\"title\":\"Condition dependence and the paradox of missing plasticity costs.\",\"authors\":\"Stephen P De Lisle,&nbsp;Locke Rowe\",\"doi\":\"10.1093/evlett/qrad009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phenotypic plasticity plays a key role in adaptation to changing environments. However, plasticity is neither perfect nor ubiquitous, implying that fitness costs may limit the evolution of phenotypic plasticity in nature. The measurement of such costs of plasticity has proved elusive; decades of experiments show that fitness costs of plasticity are often weak or nonexistent. Here, we show that this paradox could potentially be explained by condition dependence. We develop two models differing in their assumptions about how condition dependence arises; both models show that variation in condition can readily mask costs of plasticity even when such costs are substantial. This can be shown simply in a model where plasticity itself evolves condition dependence, which would be expected if costly. Yet similar effects emerge from an alternative model where trait expression itself is condition-dependent. In this more complex model, the average condition in each environment and genetic covariance in condition across environments both determine when costs of plasticity can be revealed. Analogous to the paradox of missing trade-offs between life history traits, our models show that variation in condition can mask costs of plasticity even when costs exist, and suggest this conclusion may be robust to the details of how condition affects trait expression. Our models suggest that condition dependence can also account for the often-observed pattern of elevated plasticity costs inferred in stressful environments, the maintenance of genetic variance in plasticity, and provides insight into experimental and biological scenarios ideal for revealing a cost of phenotypic plasticity.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078974/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/evlett/qrad009\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrad009","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

表型可塑性在适应环境变化中起着关键作用。然而,可塑性既不完美,也不普遍,这意味着适应度成本可能会限制自然界中表型可塑性的进化。事实证明,这种可塑性成本的测量是难以捉摸的;几十年的实验表明,可塑性的适应性成本通常很弱或根本不存在。在这里,我们证明了这种悖论可以用条件依赖来解释。我们开发了两个模型,它们对条件依赖如何产生的假设不同;这两个模型都表明,条件的变化可以很容易地掩盖可塑性的成本,即使这种成本是巨大的。这可以在一个模型中简单地显示出来,在这个模型中,可塑性本身演变为条件依赖,这是预期的,如果代价高昂的话。然而,类似的效果也出现在另一种模型中,即性状表达本身依赖于条件。在这个更复杂的模型中,每种环境中的平均条件和不同环境中的遗传协方差都决定了可塑性成本何时可以被揭示。类似于生活史特征之间缺少权衡的悖论,我们的模型表明,即使存在成本,条件的变化也可以掩盖可塑性的成本,并表明这一结论对于条件如何影响特征表达的细节可能是可靠的。我们的模型表明,条件依赖也可以解释在压力环境中推断出的可塑性成本升高的常见模式,可塑性遗传变异的维持,并为揭示表型可塑性成本的实验和生物学场景提供了理想的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Condition dependence and the paradox of missing plasticity costs.

Phenotypic plasticity plays a key role in adaptation to changing environments. However, plasticity is neither perfect nor ubiquitous, implying that fitness costs may limit the evolution of phenotypic plasticity in nature. The measurement of such costs of plasticity has proved elusive; decades of experiments show that fitness costs of plasticity are often weak or nonexistent. Here, we show that this paradox could potentially be explained by condition dependence. We develop two models differing in their assumptions about how condition dependence arises; both models show that variation in condition can readily mask costs of plasticity even when such costs are substantial. This can be shown simply in a model where plasticity itself evolves condition dependence, which would be expected if costly. Yet similar effects emerge from an alternative model where trait expression itself is condition-dependent. In this more complex model, the average condition in each environment and genetic covariance in condition across environments both determine when costs of plasticity can be revealed. Analogous to the paradox of missing trade-offs between life history traits, our models show that variation in condition can mask costs of plasticity even when costs exist, and suggest this conclusion may be robust to the details of how condition affects trait expression. Our models suggest that condition dependence can also account for the often-observed pattern of elevated plasticity costs inferred in stressful environments, the maintenance of genetic variance in plasticity, and provides insight into experimental and biological scenarios ideal for revealing a cost of phenotypic plasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1