{"title":"完整膜蛋白的质谱分析:转向更原生的环境。","authors":"Abraham Oluwole, Denis Shutin, Jani R Bolla","doi":"10.1042/EBC20220169","DOIUrl":null,"url":null,"abstract":"<p><p>Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 2","pages":"201-213"},"PeriodicalIF":5.6000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070488/pdf/","citationCount":"3","resultStr":"{\"title\":\"Mass spectrometry of intact membrane proteins: shifting towards a more native-like context.\",\"authors\":\"Abraham Oluwole, Denis Shutin, Jani R Bolla\",\"doi\":\"10.1042/EBC20220169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.</p>\",\"PeriodicalId\":11812,\"journal\":{\"name\":\"Essays in biochemistry\",\"volume\":\"67 2\",\"pages\":\"201-213\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070488/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essays in biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/EBC20220169\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20220169","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mass spectrometry of intact membrane proteins: shifting towards a more native-like context.
Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.