PA2G4P4通过PTEN/AKT/mTOR信号通路促进胶质瘤细胞迁移和肿瘤发生。

Xiaofeng Hou, ZhengXiong Kou, Hengzhu Zhang
{"title":"PA2G4P4通过PTEN/AKT/mTOR信号通路促进胶质瘤细胞迁移和肿瘤发生。","authors":"Xiaofeng Hou,&nbsp;ZhengXiong Kou,&nbsp;Hengzhu Zhang","doi":"10.1615/JEnvironPatholToxicolOncol.2022044068","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulation of pseudogene expression is closely related to the progression of various cancers, including glioma. Proliferation-associated 2G4 pseudogene 4 (PA2G4P4) could affect cell viability and apoptosis of glioma cells. However, the specific regulatory mechanism of PA2G4P4 is not clear. In this paper, we found that PA2G4P4 overexpres-sion promoted glioma cell proliferation, migration and cell cycle progression, whereas PA2G4P4 knockdown inhibited cancer progression. Knockdown of PA2G4P4 also suppressed the tumorigenesis of glioma cells in vivo. Furthermore, knockdown of PA2G4 after overexpression of PA2G4P4 decreased the cell viability and migration ability to normal level. The protein level of a tumor suppressor gene phosphatase and tensing homolog (PTEN) was greatly decreased in U87 cells after PA2G4P4 overexpression, while increased after PA2G4 knockdown; on the contrary, the protein levels of P-AKT and P-S6 were obviously induced in U87 cells after PA2G4P4 overexpression, and decreased after PA2G4 knockdown. The cell ability, colony formation ability and cell migration ability were all recovered to normal level by adding an AKT inhibitor MK2206 to the glioma cells, which were induced by PA2G4P4 overexpression. Our results revealed that PA2G4P4 could regulate glioma cell proliferation and migration through PTEN/AKT/mTOR signaling pathway by targeting PA2G4 gene. PA2G4P4 may become a target for glioma treatment.</p>","PeriodicalId":50201,"journal":{"name":"Journal of Environmental Pathology Toxicology and Oncology","volume":"42 2","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PA2G4P4 Promotes Glioma Cell Migration and Tumorigenesis through the PTEN/AKT/mTOR Signaling Pathway.\",\"authors\":\"Xiaofeng Hou,&nbsp;ZhengXiong Kou,&nbsp;Hengzhu Zhang\",\"doi\":\"10.1615/JEnvironPatholToxicolOncol.2022044068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysregulation of pseudogene expression is closely related to the progression of various cancers, including glioma. Proliferation-associated 2G4 pseudogene 4 (PA2G4P4) could affect cell viability and apoptosis of glioma cells. However, the specific regulatory mechanism of PA2G4P4 is not clear. In this paper, we found that PA2G4P4 overexpres-sion promoted glioma cell proliferation, migration and cell cycle progression, whereas PA2G4P4 knockdown inhibited cancer progression. Knockdown of PA2G4P4 also suppressed the tumorigenesis of glioma cells in vivo. Furthermore, knockdown of PA2G4 after overexpression of PA2G4P4 decreased the cell viability and migration ability to normal level. The protein level of a tumor suppressor gene phosphatase and tensing homolog (PTEN) was greatly decreased in U87 cells after PA2G4P4 overexpression, while increased after PA2G4 knockdown; on the contrary, the protein levels of P-AKT and P-S6 were obviously induced in U87 cells after PA2G4P4 overexpression, and decreased after PA2G4 knockdown. The cell ability, colony formation ability and cell migration ability were all recovered to normal level by adding an AKT inhibitor MK2206 to the glioma cells, which were induced by PA2G4P4 overexpression. Our results revealed that PA2G4P4 could regulate glioma cell proliferation and migration through PTEN/AKT/mTOR signaling pathway by targeting PA2G4 gene. PA2G4P4 may become a target for glioma treatment.</p>\",\"PeriodicalId\":50201,\"journal\":{\"name\":\"Journal of Environmental Pathology Toxicology and Oncology\",\"volume\":\"42 2\",\"pages\":\"1-9\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Pathology Toxicology and Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/JEnvironPatholToxicolOncol.2022044068\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Pathology Toxicology and Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/JEnvironPatholToxicolOncol.2022044068","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

假基因表达的失调与包括胶质瘤在内的各种癌症的进展密切相关。增殖相关2G4假基因4 (PA2G4P4)可影响胶质瘤细胞的活力和凋亡。然而,PA2G4P4的具体调控机制尚不清楚。我们发现PA2G4P4过表达促进胶质瘤细胞增殖、迁移和细胞周期进展,而PA2G4P4敲低抑制肿瘤进展。在体内,PA2G4P4的下调也抑制了胶质瘤细胞的发生。此外,PA2G4P4过表达后,敲低PA2G4使细胞活力和迁移能力降至正常水平。PA2G4P4过表达后,U87细胞中肿瘤抑制基因磷酸酶及张力同源物(PTEN)蛋白水平显著降低,而PA2G4敲低后,PTEN蛋白水平升高;相反,PA2G4P4过表达后,U87细胞中P-AKT和P-S6蛋白水平明显升高,而PA2G4敲低后,P-AKT和P-S6蛋白水平下降。在PA2G4P4过表达诱导的胶质瘤细胞中加入AKT抑制剂MK2206后,细胞能力、集落形成能力和细胞迁移能力均恢复到正常水平。结果表明,PA2G4P4可通过PTEN/AKT/mTOR信号通路调控胶质瘤细胞的增殖和迁移。PA2G4P4可能成为胶质瘤治疗的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PA2G4P4 Promotes Glioma Cell Migration and Tumorigenesis through the PTEN/AKT/mTOR Signaling Pathway.

Dysregulation of pseudogene expression is closely related to the progression of various cancers, including glioma. Proliferation-associated 2G4 pseudogene 4 (PA2G4P4) could affect cell viability and apoptosis of glioma cells. However, the specific regulatory mechanism of PA2G4P4 is not clear. In this paper, we found that PA2G4P4 overexpres-sion promoted glioma cell proliferation, migration and cell cycle progression, whereas PA2G4P4 knockdown inhibited cancer progression. Knockdown of PA2G4P4 also suppressed the tumorigenesis of glioma cells in vivo. Furthermore, knockdown of PA2G4 after overexpression of PA2G4P4 decreased the cell viability and migration ability to normal level. The protein level of a tumor suppressor gene phosphatase and tensing homolog (PTEN) was greatly decreased in U87 cells after PA2G4P4 overexpression, while increased after PA2G4 knockdown; on the contrary, the protein levels of P-AKT and P-S6 were obviously induced in U87 cells after PA2G4P4 overexpression, and decreased after PA2G4 knockdown. The cell ability, colony formation ability and cell migration ability were all recovered to normal level by adding an AKT inhibitor MK2206 to the glioma cells, which were induced by PA2G4P4 overexpression. Our results revealed that PA2G4P4 could regulate glioma cell proliferation and migration through PTEN/AKT/mTOR signaling pathway by targeting PA2G4 gene. PA2G4P4 may become a target for glioma treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The Journal of Environmental Pathology, Toxicology and Oncology publishes original research and reviews of factors and conditions that affect human and animal carcinogensis. Scientists in various fields of biological research, such as toxicologists, chemists, immunologists, pharmacologists, oncologists, pneumologists, and industrial technologists, will find this journal useful in their research on the interface between the environment, humans, and animals.
期刊最新文献
Ethyl Acetate Extract of Oratosquilla Inhibits the Growth of Nasopharyngeal Carcinoma through the Hippo Pathway Molecular mechanism of lncRNAs in ovarian cancer: lncRNA CASC19 regulates the malignant progression of ovarian cancer through miR-761/CBX2 axis LncRNA linc01105 inhibits gastric cancer growth and metastasis by regulating the miR-650/TCEA3 axis Identification of Lung Adenocarcinoma Subtypes by Using Growth Hormone-Releasing Hormone-Related Genes and Establishment of Signature to Predict Prognosis and Guide Immunother Analysis of the clinical value of hsa_circ_0001955 in papillary thyroid cancer treated with 131 iodine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1