Kevin Godin-Dubois;Sylvain Cussat-Blanc;Yves Duthen
{"title":"通过虚拟功能磁共振成像解释战斗生物的神经进化","authors":"Kevin Godin-Dubois;Sylvain Cussat-Blanc;Yves Duthen","doi":"10.1162/artl_a_00389","DOIUrl":null,"url":null,"abstract":"While interest in artificial neural networks (ANNs) has been renewed by the ubiquitous use of deep learning to solve high-dimensional problems, we are still far from general artificial intelligence. In this article, we address the problem of emergent cognitive capabilities and, more crucially, of their detection, by relying on co-evolving creatures with mutable morphology and neural structure. The former is implemented via both static and mobile structures whose shapes are controlled by cubic splines. The latter uses ESHyperNEAT to discover not only appropriate combinations of connections and weights but also to extrapolate hidden neuron distribution. The creatures integrate low-level perceptions (touch/pain proprioceptors, retina-based vision, frequency-based hearing) to inform their actions. By discovering a functional mapping between individual neurons and specific stimuli, we extract a high-level module-based abstraction of a creature’s brain. This drastically simplifies the discovery of relationships between naturally occurring events and their neural implementation. Applying this methodology to creatures resulting from solitary and tag-team co-evolution showed remarkable dynamics such as range-finding and structured communication. Such discovery was made possible by the abstraction provided by the modular ANN which allowed groups of neurons to be viewed as functionally enclosed entities.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 1","pages":"66-93"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explaining the Neuroevolution of Fighting Creatures Through Virtual fMRI\",\"authors\":\"Kevin Godin-Dubois;Sylvain Cussat-Blanc;Yves Duthen\",\"doi\":\"10.1162/artl_a_00389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While interest in artificial neural networks (ANNs) has been renewed by the ubiquitous use of deep learning to solve high-dimensional problems, we are still far from general artificial intelligence. In this article, we address the problem of emergent cognitive capabilities and, more crucially, of their detection, by relying on co-evolving creatures with mutable morphology and neural structure. The former is implemented via both static and mobile structures whose shapes are controlled by cubic splines. The latter uses ESHyperNEAT to discover not only appropriate combinations of connections and weights but also to extrapolate hidden neuron distribution. The creatures integrate low-level perceptions (touch/pain proprioceptors, retina-based vision, frequency-based hearing) to inform their actions. By discovering a functional mapping between individual neurons and specific stimuli, we extract a high-level module-based abstraction of a creature’s brain. This drastically simplifies the discovery of relationships between naturally occurring events and their neural implementation. Applying this methodology to creatures resulting from solitary and tag-team co-evolution showed remarkable dynamics such as range-finding and structured communication. Such discovery was made possible by the abstraction provided by the modular ANN which allowed groups of neurons to be viewed as functionally enclosed entities.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"29 1\",\"pages\":\"66-93\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10316230/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10316230/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Explaining the Neuroevolution of Fighting Creatures Through Virtual fMRI
While interest in artificial neural networks (ANNs) has been renewed by the ubiquitous use of deep learning to solve high-dimensional problems, we are still far from general artificial intelligence. In this article, we address the problem of emergent cognitive capabilities and, more crucially, of their detection, by relying on co-evolving creatures with mutable morphology and neural structure. The former is implemented via both static and mobile structures whose shapes are controlled by cubic splines. The latter uses ESHyperNEAT to discover not only appropriate combinations of connections and weights but also to extrapolate hidden neuron distribution. The creatures integrate low-level perceptions (touch/pain proprioceptors, retina-based vision, frequency-based hearing) to inform their actions. By discovering a functional mapping between individual neurons and specific stimuli, we extract a high-level module-based abstraction of a creature’s brain. This drastically simplifies the discovery of relationships between naturally occurring events and their neural implementation. Applying this methodology to creatures resulting from solitary and tag-team co-evolution showed remarkable dynamics such as range-finding and structured communication. Such discovery was made possible by the abstraction provided by the modular ANN which allowed groups of neurons to be viewed as functionally enclosed entities.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.