{"title":"信息对迁徙路线形成和迁徙动态的影响","authors":"Martin Hinsch;Jakub Bijak","doi":"10.1162/artl_a_00388","DOIUrl":null,"url":null,"abstract":"Most models of migration simply assume that migrants somehow make their way from their point of origin to their chosen destination. We know, however, that—especially in the case of asylum migration—the migrant journey often is a hazardous, difficult process where migrants make decisions based on limited information and under severe material constraints. Here we investigate the dynamics of the migration journey itself using a spatially explicit, agent-based model. In particular we are interested in the effects of limited information and information exchange. We find that under limited information, migration routes generally become suboptimal, their stochasticity increases, and migrants arrive much less frequently at their preferred destination. Under specific circumstances, self-organised consensus routes emerge that are largely unpredictable. Limited information also strongly reduces the migrants’ ability to react to changes in circumstances. We conclude, first, that information and information exchange is likely to have considerable effects on all aspects of migration and should thus be included in future modelling efforts and, second, that there are many questions in theoretical migration research that are likely to profit from the use of agent-based modelling techniques.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 1","pages":"3-20"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Effects of Information on the Formation of Migration Routes and the Dynamics of Migration\",\"authors\":\"Martin Hinsch;Jakub Bijak\",\"doi\":\"10.1162/artl_a_00388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most models of migration simply assume that migrants somehow make their way from their point of origin to their chosen destination. We know, however, that—especially in the case of asylum migration—the migrant journey often is a hazardous, difficult process where migrants make decisions based on limited information and under severe material constraints. Here we investigate the dynamics of the migration journey itself using a spatially explicit, agent-based model. In particular we are interested in the effects of limited information and information exchange. We find that under limited information, migration routes generally become suboptimal, their stochasticity increases, and migrants arrive much less frequently at their preferred destination. Under specific circumstances, self-organised consensus routes emerge that are largely unpredictable. Limited information also strongly reduces the migrants’ ability to react to changes in circumstances. We conclude, first, that information and information exchange is likely to have considerable effects on all aspects of migration and should thus be included in future modelling efforts and, second, that there are many questions in theoretical migration research that are likely to profit from the use of agent-based modelling techniques.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"29 1\",\"pages\":\"3-20\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10301832/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301832/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The Effects of Information on the Formation of Migration Routes and the Dynamics of Migration
Most models of migration simply assume that migrants somehow make their way from their point of origin to their chosen destination. We know, however, that—especially in the case of asylum migration—the migrant journey often is a hazardous, difficult process where migrants make decisions based on limited information and under severe material constraints. Here we investigate the dynamics of the migration journey itself using a spatially explicit, agent-based model. In particular we are interested in the effects of limited information and information exchange. We find that under limited information, migration routes generally become suboptimal, their stochasticity increases, and migrants arrive much less frequently at their preferred destination. Under specific circumstances, self-organised consensus routes emerge that are largely unpredictable. Limited information also strongly reduces the migrants’ ability to react to changes in circumstances. We conclude, first, that information and information exchange is likely to have considerable effects on all aspects of migration and should thus be included in future modelling efforts and, second, that there are many questions in theoretical migration research that are likely to profit from the use of agent-based modelling techniques.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.