结节疣子虫(疣子亚纲:白蚁科:白蚁科)喙腺超微结构的研究

IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Arthropod Structure & Development Pub Date : 2023-03-01 DOI:10.1016/j.asd.2023.101238
Cédric Aumont , Tereza Beránková , Dino P. McMahon , Renate Radek , Pierre D. Akama , David Sillam-Dussès , Jan Šobotník
{"title":"结节疣子虫(疣子亚纲:白蚁科:白蚁科)喙腺超微结构的研究","authors":"Cédric Aumont ,&nbsp;Tereza Beránková ,&nbsp;Dino P. McMahon ,&nbsp;Renate Radek ,&nbsp;Pierre D. Akama ,&nbsp;David Sillam-Dussès ,&nbsp;Jan Šobotník","doi":"10.1016/j.asd.2023.101238","DOIUrl":null,"url":null,"abstract":"<div><p><span>The soil-feeding habit is an evolutionary novelty found in some advanced groups of termites. The study of such groups is important to revealing interesting adaptations to this way-of-life. The genus </span><em>Verrucositermes</em><span> is one such example, characterized by peculiar outgrowths on the head capsule, antennae and maxillary palps, which are not found in any other termite. These structures have been hypothesized to be linked to the presence of a new exocrine organ, the rostral gland, whose structure has remained unexplored. We have thus studied the ultrastructure of the epidermal layer of the head capsule of </span><em>Verrucositermes tuberosus</em><span><span><span> soldiers. We describe the ultrastructure of the rostral gland, which consists of class 3 secretory cells only. The dominant secretory organelles comprise </span>rough endoplasmic reticulum and </span>Golgi apparatus, which provide secretions delivered to the surface of the head, likely made of peptide-derived components of unclear function. We discuss a possible role of the rostral gland of soldiers as an adaptation to the frequent encounter with soil pathogens during search for new food resources.</span></p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"73 ","pages":"Article 101238"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The ultrastructure of the rostral gland in soldiers of Verrucositermes tuberosus (Blattodea: Termitidae: Nasutitermitinae)\",\"authors\":\"Cédric Aumont ,&nbsp;Tereza Beránková ,&nbsp;Dino P. McMahon ,&nbsp;Renate Radek ,&nbsp;Pierre D. Akama ,&nbsp;David Sillam-Dussès ,&nbsp;Jan Šobotník\",\"doi\":\"10.1016/j.asd.2023.101238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The soil-feeding habit is an evolutionary novelty found in some advanced groups of termites. The study of such groups is important to revealing interesting adaptations to this way-of-life. The genus </span><em>Verrucositermes</em><span> is one such example, characterized by peculiar outgrowths on the head capsule, antennae and maxillary palps, which are not found in any other termite. These structures have been hypothesized to be linked to the presence of a new exocrine organ, the rostral gland, whose structure has remained unexplored. We have thus studied the ultrastructure of the epidermal layer of the head capsule of </span><em>Verrucositermes tuberosus</em><span><span><span> soldiers. We describe the ultrastructure of the rostral gland, which consists of class 3 secretory cells only. The dominant secretory organelles comprise </span>rough endoplasmic reticulum and </span>Golgi apparatus, which provide secretions delivered to the surface of the head, likely made of peptide-derived components of unclear function. We discuss a possible role of the rostral gland of soldiers as an adaptation to the frequent encounter with soil pathogens during search for new food resources.</span></p></div>\",\"PeriodicalId\":55461,\"journal\":{\"name\":\"Arthropod Structure & Development\",\"volume\":\"73 \",\"pages\":\"Article 101238\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthropod Structure & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1467803923000051\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod Structure & Development","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1467803923000051","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

土食习性是在一些高级白蚁群中发现的进化新现象。对这些群体的研究对于揭示对这种生活方式的有趣适应非常重要。Verrucositermes属就是这样一个例子,其特点是在头囊、触角和上颌触须上有特殊的生长,这在任何其他白蚁中都没有发现。这些结构被假设与一种新的外分泌器官——吻腺的存在有关,其结构尚未被探索。因此,我们研究了疣子头囊表皮层的超微结构。我们描述了吻侧腺的超微结构,它仅由3类分泌细胞组成。主要的分泌细胞器包括粗糙的内质网和高尔基体,它们向头部表面提供分泌物,可能由功能不明的肽衍生成分组成。我们讨论了士兵的吻腺作为适应在寻找新的食物资源期间频繁遇到土壤病原体的可能作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The ultrastructure of the rostral gland in soldiers of Verrucositermes tuberosus (Blattodea: Termitidae: Nasutitermitinae)

The soil-feeding habit is an evolutionary novelty found in some advanced groups of termites. The study of such groups is important to revealing interesting adaptations to this way-of-life. The genus Verrucositermes is one such example, characterized by peculiar outgrowths on the head capsule, antennae and maxillary palps, which are not found in any other termite. These structures have been hypothesized to be linked to the presence of a new exocrine organ, the rostral gland, whose structure has remained unexplored. We have thus studied the ultrastructure of the epidermal layer of the head capsule of Verrucositermes tuberosus soldiers. We describe the ultrastructure of the rostral gland, which consists of class 3 secretory cells only. The dominant secretory organelles comprise rough endoplasmic reticulum and Golgi apparatus, which provide secretions delivered to the surface of the head, likely made of peptide-derived components of unclear function. We discuss a possible role of the rostral gland of soldiers as an adaptation to the frequent encounter with soil pathogens during search for new food resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
10.00%
发文量
54
审稿时长
60 days
期刊介绍: Arthropod Structure & Development is a Journal of Arthropod Structural Biology, Development, and Functional Morphology; it considers manuscripts that deal with micro- and neuroanatomy, development, biomechanics, organogenesis in particular under comparative and evolutionary aspects but not merely taxonomic papers. The aim of the journal is to publish papers in the areas of functional and comparative anatomy and development, with an emphasis on the role of cellular organization in organ function. The journal will also publish papers on organogenisis, embryonic and postembryonic development, and organ or tissue regeneration and repair. Manuscripts dealing with comparative and evolutionary aspects of microanatomy and development are encouraged.
期刊最新文献
Cuticle ultrastructure of the Early Devonian trigonotarbid arachnid Palaeocharinus Evolution of and structures involved in wing folding in featherwing beetles (Coleoptera: Ptiliidae) Morphology of lecithotrophic postlarvae of genus Austropallene (Arthropoda: Chelicerata) with some notes on reproductive strategy The eyestalk photophore of Northern krill Meganyctiphanes norvegica (M. Sars) (Euphausiacea) re-investigated: Innervation by specialized ommatidia of the compound eye Outside Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1