个体化手术安排的分位数回归森林。

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Health Care Management Science Pub Date : 2022-12-01 DOI:10.1007/s10729-022-09609-0
Arlen Dean, Amirhossein Meisami, Henry Lam, Mark P Van Oyen, Christopher Stromblad, Nick Kastango
{"title":"个体化手术安排的分位数回归森林。","authors":"Arlen Dean,&nbsp;Amirhossein Meisami,&nbsp;Henry Lam,&nbsp;Mark P Van Oyen,&nbsp;Christopher Stromblad,&nbsp;Nick Kastango","doi":"10.1007/s10729-022-09609-0","DOIUrl":null,"url":null,"abstract":"<p><p>Determining the optimal surgical case start times is a challenging stochastic optimization problem that shares a key feature with many other healthcare operations problems. Namely, successful problem solutions require using a vast array of available historical data to create distributions that accurately capture a case duration's uncertainty for integration into an optimization model. Distribution fitting is the conventional approach to generate these distributions, but it can only employ a limited, aggregate portion of the detailed patient features available in Electronic Medical Records systems today. If all the available information can be taken advantage of, then distributions individualized to every case can be constructed whose precision would support higher quality solutions in the presence of uncertainty. Our individualized stochastic optimization framework shows how the quantile regression forest (QRF) method predicts individualized distributions that are integrable into sample-average approximation, robust optimization, and distributionally robust optimization models for problems like surgery scheduling. In this paper, we present some related theoretical performance guarantees for each formulation. Numerically, we also study our approach's benefits relative to three other traditional models using data from Memorial Sloan Kettering Cancer Center in New York, NY, USA.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"25 4","pages":"682-709"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantile regression forests for individualized surgery scheduling.\",\"authors\":\"Arlen Dean,&nbsp;Amirhossein Meisami,&nbsp;Henry Lam,&nbsp;Mark P Van Oyen,&nbsp;Christopher Stromblad,&nbsp;Nick Kastango\",\"doi\":\"10.1007/s10729-022-09609-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Determining the optimal surgical case start times is a challenging stochastic optimization problem that shares a key feature with many other healthcare operations problems. Namely, successful problem solutions require using a vast array of available historical data to create distributions that accurately capture a case duration's uncertainty for integration into an optimization model. Distribution fitting is the conventional approach to generate these distributions, but it can only employ a limited, aggregate portion of the detailed patient features available in Electronic Medical Records systems today. If all the available information can be taken advantage of, then distributions individualized to every case can be constructed whose precision would support higher quality solutions in the presence of uncertainty. Our individualized stochastic optimization framework shows how the quantile regression forest (QRF) method predicts individualized distributions that are integrable into sample-average approximation, robust optimization, and distributionally robust optimization models for problems like surgery scheduling. In this paper, we present some related theoretical performance guarantees for each formulation. Numerically, we also study our approach's benefits relative to three other traditional models using data from Memorial Sloan Kettering Cancer Center in New York, NY, USA.</p>\",\"PeriodicalId\":12903,\"journal\":{\"name\":\"Health Care Management Science\",\"volume\":\"25 4\",\"pages\":\"682-709\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Management Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10729-022-09609-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-022-09609-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 2

摘要

确定最佳手术病例开始时间是一个具有挑战性的随机优化问题,它与许多其他医疗保健操作问题具有相同的关键特征。也就是说,成功的问题解决方案需要使用大量可用的历史数据来创建准确捕获案例持续时间不确定性的分布,以便集成到优化模型中。分布拟合是生成这些分布的传统方法,但它只能使用目前电子医疗记录系统中可用的详细患者特征的有限的汇总部分。如果可以利用所有可用信息,则可以构建针对每种情况的个性化分布,其精度将在存在不确定性的情况下支持更高质量的解决方案。我们的个体化随机优化框架展示了分位数回归森林(QRF)方法如何预测个体化分布,这些分布可集成到样本平均近似、鲁棒优化和分布鲁棒优化模型中,以解决手术调度等问题。在本文中,我们给出了每个公式的一些相关的理论性能保证。在数值上,我们还研究了我们的方法相对于其他三种传统模型的好处,使用的数据来自美国纽约州纽约的纪念斯隆凯特琳癌症中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantile regression forests for individualized surgery scheduling.

Determining the optimal surgical case start times is a challenging stochastic optimization problem that shares a key feature with many other healthcare operations problems. Namely, successful problem solutions require using a vast array of available historical data to create distributions that accurately capture a case duration's uncertainty for integration into an optimization model. Distribution fitting is the conventional approach to generate these distributions, but it can only employ a limited, aggregate portion of the detailed patient features available in Electronic Medical Records systems today. If all the available information can be taken advantage of, then distributions individualized to every case can be constructed whose precision would support higher quality solutions in the presence of uncertainty. Our individualized stochastic optimization framework shows how the quantile regression forest (QRF) method predicts individualized distributions that are integrable into sample-average approximation, robust optimization, and distributionally robust optimization models for problems like surgery scheduling. In this paper, we present some related theoretical performance guarantees for each formulation. Numerically, we also study our approach's benefits relative to three other traditional models using data from Memorial Sloan Kettering Cancer Center in New York, NY, USA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
期刊最新文献
Assessing the performance of Portuguese public hospitals before and during COVID-19 outbreak, with optimistic and pessimistic benchmarking approaches. A reinforcement learning approach for the online dynamic home health care scheduling problem. Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data. Forecasting to support EMS tactical planning: what is important and what is not. Health care management science for underserved populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1