Amin Mehrabian, Saba Dadpour, Mohammad Mashreghi, Javad Zarqi, Anis Askarizadeh, Ali Badiee, Leila Arabi, Seyedeh Alia Moosavian, Mahmoud Reza Jaafari
{"title":"谷胱甘肽聚乙二醇化纳米脂质体多柔比星在正常小鼠脑内的生物分布比较","authors":"Amin Mehrabian, Saba Dadpour, Mohammad Mashreghi, Javad Zarqi, Anis Askarizadeh, Ali Badiee, Leila Arabi, Seyedeh Alia Moosavian, Mahmoud Reza Jaafari","doi":"10.1049/nbt2.12111","DOIUrl":null,"url":null,"abstract":"<p>Several obstacles limit the efficacy of brain tumour treatment, most notably the blood-brain barrier (BBB), which prevents the brain uptake of the majority of accessible medicines due to tight junctions. The presence of glutathione (GSH) receptors on the BBB surface has been demonstrated in numerous papers; consequently, products containing glutathione as a targeting ligand coupled with nanoliposomes are used to enhance drug delivery across the BBB. Here, the 5% pre-inserted PEG2000-GSH PEGylated liposomal doxorubicin was conducted according to 2B3-101 being tested in clinical trials. In addition, PEGylated nanoliposomal doxorubicin connected to the spacer-GSH targeting ligand (GSGGCE) and the PEG3400 was conducted using post-insertion method. Next, in vivo biodistribution of the produced formulations was tested on healthy mice to see if GSGGCE, as the targeted ligand, could cross the BBB compared to 5% pre-inserted PEG2000-GSH and Caelyx<sup>®</sup>. Compared to the pre-inserted formulation and Caelyx<sup>®</sup>, the post-inserted formulations' concentration was lower in the heart and higher in brain tissues, resulting in boosting the brain concentration of accumulated doxorubicin with fewer possible side effects, including cardiotoxicity. In comparison to the pre-insertion procedure, the post-insertion method is easier, faster, and more cost-effective. Moreover, employing PEG3400 and the post-insertion approach in the PEG3400-GSGGCE liposomal formulations was found to be effective in crossing the BBB.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 2","pages":"112-124"},"PeriodicalIF":3.8000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12111","citationCount":"1","resultStr":"{\"title\":\"The comparison of biodistribution of glutathione PEGylated nanoliposomal doxorubicin formulations prepared by pre-insertion and post-insertion methods for brain delivery in normal mice\",\"authors\":\"Amin Mehrabian, Saba Dadpour, Mohammad Mashreghi, Javad Zarqi, Anis Askarizadeh, Ali Badiee, Leila Arabi, Seyedeh Alia Moosavian, Mahmoud Reza Jaafari\",\"doi\":\"10.1049/nbt2.12111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several obstacles limit the efficacy of brain tumour treatment, most notably the blood-brain barrier (BBB), which prevents the brain uptake of the majority of accessible medicines due to tight junctions. The presence of glutathione (GSH) receptors on the BBB surface has been demonstrated in numerous papers; consequently, products containing glutathione as a targeting ligand coupled with nanoliposomes are used to enhance drug delivery across the BBB. Here, the 5% pre-inserted PEG2000-GSH PEGylated liposomal doxorubicin was conducted according to 2B3-101 being tested in clinical trials. In addition, PEGylated nanoliposomal doxorubicin connected to the spacer-GSH targeting ligand (GSGGCE) and the PEG3400 was conducted using post-insertion method. Next, in vivo biodistribution of the produced formulations was tested on healthy mice to see if GSGGCE, as the targeted ligand, could cross the BBB compared to 5% pre-inserted PEG2000-GSH and Caelyx<sup>®</sup>. Compared to the pre-inserted formulation and Caelyx<sup>®</sup>, the post-inserted formulations' concentration was lower in the heart and higher in brain tissues, resulting in boosting the brain concentration of accumulated doxorubicin with fewer possible side effects, including cardiotoxicity. In comparison to the pre-insertion procedure, the post-insertion method is easier, faster, and more cost-effective. Moreover, employing PEG3400 and the post-insertion approach in the PEG3400-GSGGCE liposomal formulations was found to be effective in crossing the BBB.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"17 2\",\"pages\":\"112-124\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12111\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12111\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12111","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The comparison of biodistribution of glutathione PEGylated nanoliposomal doxorubicin formulations prepared by pre-insertion and post-insertion methods for brain delivery in normal mice
Several obstacles limit the efficacy of brain tumour treatment, most notably the blood-brain barrier (BBB), which prevents the brain uptake of the majority of accessible medicines due to tight junctions. The presence of glutathione (GSH) receptors on the BBB surface has been demonstrated in numerous papers; consequently, products containing glutathione as a targeting ligand coupled with nanoliposomes are used to enhance drug delivery across the BBB. Here, the 5% pre-inserted PEG2000-GSH PEGylated liposomal doxorubicin was conducted according to 2B3-101 being tested in clinical trials. In addition, PEGylated nanoliposomal doxorubicin connected to the spacer-GSH targeting ligand (GSGGCE) and the PEG3400 was conducted using post-insertion method. Next, in vivo biodistribution of the produced formulations was tested on healthy mice to see if GSGGCE, as the targeted ligand, could cross the BBB compared to 5% pre-inserted PEG2000-GSH and Caelyx®. Compared to the pre-inserted formulation and Caelyx®, the post-inserted formulations' concentration was lower in the heart and higher in brain tissues, resulting in boosting the brain concentration of accumulated doxorubicin with fewer possible side effects, including cardiotoxicity. In comparison to the pre-insertion procedure, the post-insertion method is easier, faster, and more cost-effective. Moreover, employing PEG3400 and the post-insertion approach in the PEG3400-GSGGCE liposomal formulations was found to be effective in crossing the BBB.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf