骨髓干细胞与组织工程支架治疗大骨节段缺损:系统综述。

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Tissue Engineering. Part B, Reviews Pub Date : 2023-10-01 Epub Date: 2023-04-20 DOI:10.1089/ten.TEB.2022.0213
Nicolò Rossi, Henrique Hadad, Maria Bejar-Chapa, Giuseppe M Peretti, Mark A Randolph, Robert W Redmond, Fernando P S Guastaldi
{"title":"骨髓干细胞与组织工程支架治疗大骨节段缺损:系统综述。","authors":"Nicolò Rossi,&nbsp;Henrique Hadad,&nbsp;Maria Bejar-Chapa,&nbsp;Giuseppe M Peretti,&nbsp;Mark A Randolph,&nbsp;Robert W Redmond,&nbsp;Fernando P S Guastaldi","doi":"10.1089/ten.TEB.2022.0213","DOIUrl":null,"url":null,"abstract":"<p><p>Critical-sized bone defects (CSBDs) represent a significant clinical challenge, stimulating researchers to seek new methods for successful bone reconstruction. The aim of this systematic review is to assess whether bone marrow stem cells (BMSCs) combined with tissue-engineered scaffolds have demonstrated improved bone regeneration in the treatment of CSBD in large preclinical animal models. A search of electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) focused on <i>in vivo</i> large animal studies identified 10 articles according to the following inclusion criteria: (1) <i>in vivo</i> large animal models with segmental bone defects; (2) treatment with tissue-engineered scaffolds combined with BMSCs; (3) the presence of a control group; and (4) a minimum of a histological analysis outcome. Animal research: reporting of in Vivo Experiments guidelines were used for quality assessment, and Systematic Review Center for Laboratory animal Experimentation's risk of bias tool was used to define internal validity. The results demonstrated that tissue-engineered scaffolds, either from autografts or allografts, when combined with BMSCs provide improved bone mineralization and bone formation, including a critical role in the remodeling phase of bone healing. BMSC-seeded scaffolds showed improved biomechanical properties and microarchitecture properties of the regenerated bone when compared with untreated and scaffold-alone groups. This review highlights the efficacy of tissue engineering strategies for the repair of extensive bone defects in preclinical large-animal models. In particular, the use of mesenchymal stem cells, combined with bioscaffolds, seems to be a successful method in comparison to cell-free scaffolds.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"457-472"},"PeriodicalIF":5.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bone Marrow Stem Cells with Tissue-Engineered Scaffolds for Large Bone Segmental Defects: A Systematic Review.\",\"authors\":\"Nicolò Rossi,&nbsp;Henrique Hadad,&nbsp;Maria Bejar-Chapa,&nbsp;Giuseppe M Peretti,&nbsp;Mark A Randolph,&nbsp;Robert W Redmond,&nbsp;Fernando P S Guastaldi\",\"doi\":\"10.1089/ten.TEB.2022.0213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Critical-sized bone defects (CSBDs) represent a significant clinical challenge, stimulating researchers to seek new methods for successful bone reconstruction. The aim of this systematic review is to assess whether bone marrow stem cells (BMSCs) combined with tissue-engineered scaffolds have demonstrated improved bone regeneration in the treatment of CSBD in large preclinical animal models. A search of electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) focused on <i>in vivo</i> large animal studies identified 10 articles according to the following inclusion criteria: (1) <i>in vivo</i> large animal models with segmental bone defects; (2) treatment with tissue-engineered scaffolds combined with BMSCs; (3) the presence of a control group; and (4) a minimum of a histological analysis outcome. Animal research: reporting of in Vivo Experiments guidelines were used for quality assessment, and Systematic Review Center for Laboratory animal Experimentation's risk of bias tool was used to define internal validity. The results demonstrated that tissue-engineered scaffolds, either from autografts or allografts, when combined with BMSCs provide improved bone mineralization and bone formation, including a critical role in the remodeling phase of bone healing. BMSC-seeded scaffolds showed improved biomechanical properties and microarchitecture properties of the regenerated bone when compared with untreated and scaffold-alone groups. This review highlights the efficacy of tissue engineering strategies for the repair of extensive bone defects in preclinical large-animal models. In particular, the use of mesenchymal stem cells, combined with bioscaffolds, seems to be a successful method in comparison to cell-free scaffolds.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":\" \",\"pages\":\"457-472\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEB.2022.0213\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2022.0213","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

临界大小骨缺损(CSBD)是一项重大的临床挑战,刺激研究人员寻求成功的骨重建新方法。本系统综述的目的是评估骨髓干细胞(BMSC)与组织工程支架相结合是否在大型临床前动物模型中改善了CSBD的骨再生。根据以下纳入标准,对电子数据库(PubMed、Embase、Web of Science和Cochrane Library)进行了集中于体内大型动物研究的搜索,确定了10篇文章:(1)具有节段性骨缺损的体内大型动物模型;(2) 组织工程支架与骨髓基质干细胞联合治疗;(3) 对照组的存在;以及(4)组织学分析结果的最小值。动物研究:使用体内实验指南的报告进行质量评估,并使用实验室动物实验系统审查中心的偏倚风险工具来定义内部有效性。结果表明,组织工程支架,无论是来自自体移植物还是同种异体移植物,当与骨髓基质干细胞结合时,都能改善骨矿化和骨形成,包括在骨愈合的重塑阶段发挥关键作用。与未处理组和单独支架组相比,接种BMSC的支架显示出再生骨的生物力学特性和微结构特性有所改善。这篇综述强调了组织工程策略在临床前大型动物模型中修复广泛骨缺损的疗效。特别是,与无细胞支架相比,使用间充质干细胞与生物支架相结合似乎是一种成功的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bone Marrow Stem Cells with Tissue-Engineered Scaffolds for Large Bone Segmental Defects: A Systematic Review.

Critical-sized bone defects (CSBDs) represent a significant clinical challenge, stimulating researchers to seek new methods for successful bone reconstruction. The aim of this systematic review is to assess whether bone marrow stem cells (BMSCs) combined with tissue-engineered scaffolds have demonstrated improved bone regeneration in the treatment of CSBD in large preclinical animal models. A search of electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) focused on in vivo large animal studies identified 10 articles according to the following inclusion criteria: (1) in vivo large animal models with segmental bone defects; (2) treatment with tissue-engineered scaffolds combined with BMSCs; (3) the presence of a control group; and (4) a minimum of a histological analysis outcome. Animal research: reporting of in Vivo Experiments guidelines were used for quality assessment, and Systematic Review Center for Laboratory animal Experimentation's risk of bias tool was used to define internal validity. The results demonstrated that tissue-engineered scaffolds, either from autografts or allografts, when combined with BMSCs provide improved bone mineralization and bone formation, including a critical role in the remodeling phase of bone healing. BMSC-seeded scaffolds showed improved biomechanical properties and microarchitecture properties of the regenerated bone when compared with untreated and scaffold-alone groups. This review highlights the efficacy of tissue engineering strategies for the repair of extensive bone defects in preclinical large-animal models. In particular, the use of mesenchymal stem cells, combined with bioscaffolds, seems to be a successful method in comparison to cell-free scaffolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
期刊最新文献
Biomechanics of Negative-Pressure-Assisted Liposuction and Their Influence on Fat Regeneration. Artificial Neural Networks: A New Frontier in Dental Tissue Regeneration. Efficacy of Fresh Versus Preserved Amniotic Membrane Grafts for Ocular Surface Reconstruction: Meta-analysis. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. Delivery Strategies of Growth Factors in Cartilage Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1