Nguyen Thanh Tung, Shang-Yang Lin, Wen-Te Liu, Yi-Chun Kuan, Chih-Da Wu, Huynh Nguyen Xuan Thao, Hoang Ba Dung, Tran Phan Chung Thuy and Hsiao-Chi Chuang*,
{"title":"阻塞性睡眠呼吸暂停患者肺泡区高颗粒物沉积可加速体脂堆积","authors":"Nguyen Thanh Tung, Shang-Yang Lin, Wen-Te Liu, Yi-Chun Kuan, Chih-Da Wu, Huynh Nguyen Xuan Thao, Hoang Ba Dung, Tran Phan Chung Thuy and Hsiao-Chi Chuang*, ","doi":"10.1021/acsenvironau.2c00034","DOIUrl":null,"url":null,"abstract":"<p >We conducted a cross-sectional study to investigate associations of particulate matter (PM) of less than 2.5 μm in aerodynamic diameter (PM<sub>2.5</sub>) and PM deposition with nocturnal changes in body composition in obstructive sleep apnea (OSA) patients. A bioelectric impedance analysis was used to measure the pre- and postsleep body composition of 185 OSA patients. Annual exposure to PM<sub>2.5</sub> was estimated by the hybrid kriging/land-use regression model. A multiple-path particle dosimetry model was employed to estimate PM deposition in lung regions. We observed that an increase in the interquartile range (IQR) (1 μg/m<sup>3</sup>) of PM<sub>2.5</sub> was associated with a 20.1% increase in right arm fat percentage and a 0.012 kg increase in right arm fat mass in OSA (<i>p</i> < 0.05). We observed that a 1 μg/m<sup>3</sup> increase in PM deposition in lung regions (i.e., total lung region, head and nasal region, tracheobronchial region, and alveolar region) was associated with increases in changes of fat percentage and fat mass of the right arm (β coefficient) (<i>p</i> < 0.05). The β coefficients decreased as follows: alveolar region > head and nasal region > tracheobronchial region > total lung region (<i>p</i> < 0.05). Our findings demonstrated that an increase in PM deposition in lung regions, especially in the alveolar region, could be associated with nocturnal changes in the fat percentage and fat mass of the right arm. PM deposition in the alveolar region could accelerate the body fat accumulation in OSA.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 1","pages":"12–17"},"PeriodicalIF":6.7000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.2c00034","citationCount":"0","resultStr":"{\"title\":\"Higher Particulate Matter Deposition in Alveolar Region Could Accelerate Body Fat Accumulation in Obstructive Sleep Apnea\",\"authors\":\"Nguyen Thanh Tung, Shang-Yang Lin, Wen-Te Liu, Yi-Chun Kuan, Chih-Da Wu, Huynh Nguyen Xuan Thao, Hoang Ba Dung, Tran Phan Chung Thuy and Hsiao-Chi Chuang*, \",\"doi\":\"10.1021/acsenvironau.2c00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We conducted a cross-sectional study to investigate associations of particulate matter (PM) of less than 2.5 μm in aerodynamic diameter (PM<sub>2.5</sub>) and PM deposition with nocturnal changes in body composition in obstructive sleep apnea (OSA) patients. A bioelectric impedance analysis was used to measure the pre- and postsleep body composition of 185 OSA patients. Annual exposure to PM<sub>2.5</sub> was estimated by the hybrid kriging/land-use regression model. A multiple-path particle dosimetry model was employed to estimate PM deposition in lung regions. We observed that an increase in the interquartile range (IQR) (1 μg/m<sup>3</sup>) of PM<sub>2.5</sub> was associated with a 20.1% increase in right arm fat percentage and a 0.012 kg increase in right arm fat mass in OSA (<i>p</i> < 0.05). We observed that a 1 μg/m<sup>3</sup> increase in PM deposition in lung regions (i.e., total lung region, head and nasal region, tracheobronchial region, and alveolar region) was associated with increases in changes of fat percentage and fat mass of the right arm (β coefficient) (<i>p</i> < 0.05). The β coefficients decreased as follows: alveolar region > head and nasal region > tracheobronchial region > total lung region (<i>p</i> < 0.05). Our findings demonstrated that an increase in PM deposition in lung regions, especially in the alveolar region, could be associated with nocturnal changes in the fat percentage and fat mass of the right arm. PM deposition in the alveolar region could accelerate the body fat accumulation in OSA.</p>\",\"PeriodicalId\":29801,\"journal\":{\"name\":\"ACS Environmental Au\",\"volume\":\"3 1\",\"pages\":\"12–17\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.2c00034\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Environmental Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenvironau.2c00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.2c00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Higher Particulate Matter Deposition in Alveolar Region Could Accelerate Body Fat Accumulation in Obstructive Sleep Apnea
We conducted a cross-sectional study to investigate associations of particulate matter (PM) of less than 2.5 μm in aerodynamic diameter (PM2.5) and PM deposition with nocturnal changes in body composition in obstructive sleep apnea (OSA) patients. A bioelectric impedance analysis was used to measure the pre- and postsleep body composition of 185 OSA patients. Annual exposure to PM2.5 was estimated by the hybrid kriging/land-use regression model. A multiple-path particle dosimetry model was employed to estimate PM deposition in lung regions. We observed that an increase in the interquartile range (IQR) (1 μg/m3) of PM2.5 was associated with a 20.1% increase in right arm fat percentage and a 0.012 kg increase in right arm fat mass in OSA (p < 0.05). We observed that a 1 μg/m3 increase in PM deposition in lung regions (i.e., total lung region, head and nasal region, tracheobronchial region, and alveolar region) was associated with increases in changes of fat percentage and fat mass of the right arm (β coefficient) (p < 0.05). The β coefficients decreased as follows: alveolar region > head and nasal region > tracheobronchial region > total lung region (p < 0.05). Our findings demonstrated that an increase in PM deposition in lung regions, especially in the alveolar region, could be associated with nocturnal changes in the fat percentage and fat mass of the right arm. PM deposition in the alveolar region could accelerate the body fat accumulation in OSA.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management