化学品排放、命运、危害、暴露和风险评估的化学性质数据的检索、选择和评估

IF 6.7 Q1 ENGINEERING, ENVIRONMENTAL ACS Environmental Au Pub Date : 2022-07-19 DOI:10.1021/acsenvironau.2c00010
Li Li*, Zhizhen Zhang, Yujie Men, Sivani Baskaran, Alessandro Sangion, Shenghong Wang, Jon A. Arnot and Frank Wania, 
{"title":"化学品排放、命运、危害、暴露和风险评估的化学性质数据的检索、选择和评估","authors":"Li Li*,&nbsp;Zhizhen Zhang,&nbsp;Yujie Men,&nbsp;Sivani Baskaran,&nbsp;Alessandro Sangion,&nbsp;Shenghong Wang,&nbsp;Jon A. Arnot and Frank Wania,&nbsp;","doi":"10.1021/acsenvironau.2c00010","DOIUrl":null,"url":null,"abstract":"<p >Reliable chemical property data are the key to defensible and unbiased assessments of chemical emissions, fate, hazard, exposure, and risks. However, the retrieval, evaluation, and use of reliable chemical property data can often be a formidable challenge for chemical assessors and model users. This comprehensive review provides practical guidance for use of chemical property data in chemical assessments. We assemble available sources for obtaining experimentally derived and in silico predicted property data; we also elaborate strategies for evaluating and curating the obtained property data. We demonstrate that both experimentally derived and in silico predicted property data can be subject to considerable uncertainty and variability. Chemical assessors are encouraged to use property data derived through the harmonization of multiple carefully selected experimental data if a sufficient number of reliable laboratory measurements is available or through the consensus consolidation of predictions from multiple in silico tools if the data pool from laboratory measurements is not adequate.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/96/vg2c00010.PMC10125307.pdf","citationCount":"9","resultStr":"{\"title\":\"Retrieval, Selection, and Evaluation of Chemical Property Data for Assessments of Chemical Emissions, Fate, Hazard, Exposure, and Risks\",\"authors\":\"Li Li*,&nbsp;Zhizhen Zhang,&nbsp;Yujie Men,&nbsp;Sivani Baskaran,&nbsp;Alessandro Sangion,&nbsp;Shenghong Wang,&nbsp;Jon A. Arnot and Frank Wania,&nbsp;\",\"doi\":\"10.1021/acsenvironau.2c00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Reliable chemical property data are the key to defensible and unbiased assessments of chemical emissions, fate, hazard, exposure, and risks. However, the retrieval, evaluation, and use of reliable chemical property data can often be a formidable challenge for chemical assessors and model users. This comprehensive review provides practical guidance for use of chemical property data in chemical assessments. We assemble available sources for obtaining experimentally derived and in silico predicted property data; we also elaborate strategies for evaluating and curating the obtained property data. We demonstrate that both experimentally derived and in silico predicted property data can be subject to considerable uncertainty and variability. Chemical assessors are encouraged to use property data derived through the harmonization of multiple carefully selected experimental data if a sufficient number of reliable laboratory measurements is available or through the consensus consolidation of predictions from multiple in silico tools if the data pool from laboratory measurements is not adequate.</p>\",\"PeriodicalId\":29801,\"journal\":{\"name\":\"ACS Environmental Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/96/vg2c00010.PMC10125307.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Environmental Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenvironau.2c00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.2c00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 9

摘要

可靠的化学性质数据是对化学品排放、命运、危害、暴露和风险进行可辩护和公正评估的关键。然而,检索、评估和使用可靠的化学性质数据对于化学评估人员和模型用户来说往往是一个巨大的挑战。这一综合综述为化学性质数据在化学评价中的应用提供了实际指导。我们收集可用的资源,以获得实验推导和计算机预测的属性数据;我们还详细阐述了评估和管理获得的财产数据的策略。我们证明,实验推导和在硅预测属性数据可以受到相当大的不确定性和可变性。如果有足够数量的可靠的实验室测量,鼓励化学评估人员使用通过协调多个精心挑选的实验数据得出的属性数据,或者如果实验室测量的数据池不够充分,则通过对多个计算机工具的预测进行共识整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retrieval, Selection, and Evaluation of Chemical Property Data for Assessments of Chemical Emissions, Fate, Hazard, Exposure, and Risks

Reliable chemical property data are the key to defensible and unbiased assessments of chemical emissions, fate, hazard, exposure, and risks. However, the retrieval, evaluation, and use of reliable chemical property data can often be a formidable challenge for chemical assessors and model users. This comprehensive review provides practical guidance for use of chemical property data in chemical assessments. We assemble available sources for obtaining experimentally derived and in silico predicted property data; we also elaborate strategies for evaluating and curating the obtained property data. We demonstrate that both experimentally derived and in silico predicted property data can be subject to considerable uncertainty and variability. Chemical assessors are encouraged to use property data derived through the harmonization of multiple carefully selected experimental data if a sufficient number of reliable laboratory measurements is available or through the consensus consolidation of predictions from multiple in silico tools if the data pool from laboratory measurements is not adequate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Environmental Au
ACS Environmental Au 环境科学-
CiteScore
7.10
自引率
0.00%
发文量
0
期刊介绍: ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management
期刊最新文献
Solid-Phase Reactivity-Directed Extraction (SPREx): An Alternative Approach for Simultaneous Extraction, Identification, and Prioritization of Toxic Electrophiles Produced in Water Treatment Applications Issue Publication Information Issue Editorial Masthead Recent Advances in Technologies for Phosphate Removal and Recovery: A Review Microbial Community Changes across Time and Space in a Constructed Wetland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1