{"title":"利用重症监护病房患者死亡率的大规模数据评估风险调整后的医院绩效:一种灵活的半非参数建模方法","authors":"Yakun Liang;Xuejun Jiang;Bo Zhang","doi":"10.1109/JTEHM.2023.3257179","DOIUrl":null,"url":null,"abstract":"Background and objective: Significant variability in the quality of healthcare supplied by hospitals is drawing broad attention from the United States Centers for Medicare and Medicaid Services. The primary issue is to evaluate hospital performance based on patient outcomes. Generalized linear random-effects models are a promising analytical tool for evaluating hospital performance. However, hospital compare data often violate the classical assumptions of normality on random effects and linearity representation on transformed conditional mean structures in these models. Methods: In this article, we proposed and tested the performance of a class of hospital compare models that embraces nonparametric mean structures with semi-nonparametric hospital random effects. Such models were further improved and integrated into a zero-inflated model. \n<inline-formula> <tex-math>$\\mathtt {SAS}$ </tex-math></inline-formula>\n programs to implement these newly proposed hospital compare models were thoroughly developed. The \n<inline-formula> <tex-math>$\\mathtt {SAS}$ </tex-math></inline-formula>\n programs are freely available via a GitHub (\n<uri>https:\\\\www.GitHub.com</uri>\n) repository. Results: We demonstrate the robustness of the proposed hospital compare models by conducting intensive empirical studies. Flexible semi-nonparametric random effects and functional fixed-effects mean structure were used to analyze patient mortality in a large-scale intensive care unit data set. After applying the proposed models to assess standardized modality rates and address patient-mix variability across hospitals, we detected those underperforming hospitals with higher mortality rates. Conclusions: Our research findings highlight how constructing advanced assessment tools for hospital performance could support better decision-making at the administrative and public levels. The proposed hospital compare models are comprehensive in their capacity to identify patterns of hospital random effects and to convey the variability in healthcare quality with powerful accuracy and interpretability.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"232-246"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10068535","citationCount":"0","resultStr":"{\"title\":\"Evaluating Risk-Adjusted Hospital Performance Using Large-Scale Data on Mortality Rates of Patients in Intensive Care Units: A Flexible Semi-Nonparametric Modeling Approach\",\"authors\":\"Yakun Liang;Xuejun Jiang;Bo Zhang\",\"doi\":\"10.1109/JTEHM.2023.3257179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and objective: Significant variability in the quality of healthcare supplied by hospitals is drawing broad attention from the United States Centers for Medicare and Medicaid Services. The primary issue is to evaluate hospital performance based on patient outcomes. Generalized linear random-effects models are a promising analytical tool for evaluating hospital performance. However, hospital compare data often violate the classical assumptions of normality on random effects and linearity representation on transformed conditional mean structures in these models. Methods: In this article, we proposed and tested the performance of a class of hospital compare models that embraces nonparametric mean structures with semi-nonparametric hospital random effects. Such models were further improved and integrated into a zero-inflated model. \\n<inline-formula> <tex-math>$\\\\mathtt {SAS}$ </tex-math></inline-formula>\\n programs to implement these newly proposed hospital compare models were thoroughly developed. The \\n<inline-formula> <tex-math>$\\\\mathtt {SAS}$ </tex-math></inline-formula>\\n programs are freely available via a GitHub (\\n<uri>https:\\\\\\\\www.GitHub.com</uri>\\n) repository. Results: We demonstrate the robustness of the proposed hospital compare models by conducting intensive empirical studies. Flexible semi-nonparametric random effects and functional fixed-effects mean structure were used to analyze patient mortality in a large-scale intensive care unit data set. After applying the proposed models to assess standardized modality rates and address patient-mix variability across hospitals, we detected those underperforming hospitals with higher mortality rates. Conclusions: Our research findings highlight how constructing advanced assessment tools for hospital performance could support better decision-making at the administrative and public levels. The proposed hospital compare models are comprehensive in their capacity to identify patterns of hospital random effects and to convey the variability in healthcare quality with powerful accuracy and interpretability.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"232-246\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10068535\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10068535/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10068535/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Evaluating Risk-Adjusted Hospital Performance Using Large-Scale Data on Mortality Rates of Patients in Intensive Care Units: A Flexible Semi-Nonparametric Modeling Approach
Background and objective: Significant variability in the quality of healthcare supplied by hospitals is drawing broad attention from the United States Centers for Medicare and Medicaid Services. The primary issue is to evaluate hospital performance based on patient outcomes. Generalized linear random-effects models are a promising analytical tool for evaluating hospital performance. However, hospital compare data often violate the classical assumptions of normality on random effects and linearity representation on transformed conditional mean structures in these models. Methods: In this article, we proposed and tested the performance of a class of hospital compare models that embraces nonparametric mean structures with semi-nonparametric hospital random effects. Such models were further improved and integrated into a zero-inflated model.
$\mathtt {SAS}$
programs to implement these newly proposed hospital compare models were thoroughly developed. The
$\mathtt {SAS}$
programs are freely available via a GitHub (
https:\\www.GitHub.com
) repository. Results: We demonstrate the robustness of the proposed hospital compare models by conducting intensive empirical studies. Flexible semi-nonparametric random effects and functional fixed-effects mean structure were used to analyze patient mortality in a large-scale intensive care unit data set. After applying the proposed models to assess standardized modality rates and address patient-mix variability across hospitals, we detected those underperforming hospitals with higher mortality rates. Conclusions: Our research findings highlight how constructing advanced assessment tools for hospital performance could support better decision-making at the administrative and public levels. The proposed hospital compare models are comprehensive in their capacity to identify patterns of hospital random effects and to convey the variability in healthcare quality with powerful accuracy and interpretability.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.