Riccardo De Benedictis, Alessandro Umbrico, Francesca Fracasso, Gabriella Cortellessa, Andrea Orlandini, Amedeo Cesta
{"title":"社会辅助机器人自适应交互的二分类方法。","authors":"Riccardo De Benedictis, Alessandro Umbrico, Francesca Fracasso, Gabriella Cortellessa, Andrea Orlandini, Amedeo Cesta","doi":"10.1007/s11257-022-09347-6","DOIUrl":null,"url":null,"abstract":"<p><p>Socially assistive robotics (SAR) aims at designing robots capable of guaranteeing social interaction to human users in a variety of assistance scenarios that range, e.g., from giving reminders for medications to monitoring of Activity of Daily Living, from giving advices to promote an healthy lifestyle to psychological monitoring. Among possible users, frail older adults deserve a special focus as they present a rich variability in terms of both alternative possible assistive scenarios (e.g., hospital or domestic environments) and caring needs that could change over time according to their health conditions. In this perspective, robot behaviors should be customized according to properly designed <i>user models</i>. One of the long-term research goals for SAR is the realization of robots capable of, on the one hand, <i>personalizing</i> assistance according to different health-related conditions/states of users and, on the other, <i>adapting</i> behaviors according to heterogeneous contexts as well as changing/evolving needs of users. This work proposes a solution based on a user model grounded on the international classification of functioning, disability and health (ICF) and a novel control architecture inspired by the dual-process theory. The proposed approach is general and can be deployed in many different scenarios. In this paper, we focus on a social robot in charge of the synthesis of personalized training sessions for the cognitive stimulation of older adults, customizing the adaptive verbal behavior according to the characteristics of the users and to their dynamic reactions when interacting. Evaluations with a restricted number of users show good usability of the system, a general positive attitude of users and the ability of the system to capture users personality so as to adapt the content accordingly during the verbal interaction.</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"33 2","pages":"293-331"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670074/pdf/","citationCount":"3","resultStr":"{\"title\":\"A dichotomic approach to adaptive interaction for socially assistive robots.\",\"authors\":\"Riccardo De Benedictis, Alessandro Umbrico, Francesca Fracasso, Gabriella Cortellessa, Andrea Orlandini, Amedeo Cesta\",\"doi\":\"10.1007/s11257-022-09347-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Socially assistive robotics (SAR) aims at designing robots capable of guaranteeing social interaction to human users in a variety of assistance scenarios that range, e.g., from giving reminders for medications to monitoring of Activity of Daily Living, from giving advices to promote an healthy lifestyle to psychological monitoring. Among possible users, frail older adults deserve a special focus as they present a rich variability in terms of both alternative possible assistive scenarios (e.g., hospital or domestic environments) and caring needs that could change over time according to their health conditions. In this perspective, robot behaviors should be customized according to properly designed <i>user models</i>. One of the long-term research goals for SAR is the realization of robots capable of, on the one hand, <i>personalizing</i> assistance according to different health-related conditions/states of users and, on the other, <i>adapting</i> behaviors according to heterogeneous contexts as well as changing/evolving needs of users. This work proposes a solution based on a user model grounded on the international classification of functioning, disability and health (ICF) and a novel control architecture inspired by the dual-process theory. The proposed approach is general and can be deployed in many different scenarios. In this paper, we focus on a social robot in charge of the synthesis of personalized training sessions for the cognitive stimulation of older adults, customizing the adaptive verbal behavior according to the characteristics of the users and to their dynamic reactions when interacting. Evaluations with a restricted number of users show good usability of the system, a general positive attitude of users and the ability of the system to capture users personality so as to adapt the content accordingly during the verbal interaction.</p>\",\"PeriodicalId\":49388,\"journal\":{\"name\":\"User Modeling and User-Adapted Interaction\",\"volume\":\"33 2\",\"pages\":\"293-331\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670074/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"User Modeling and User-Adapted Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11257-022-09347-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-022-09347-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
A dichotomic approach to adaptive interaction for socially assistive robots.
Socially assistive robotics (SAR) aims at designing robots capable of guaranteeing social interaction to human users in a variety of assistance scenarios that range, e.g., from giving reminders for medications to monitoring of Activity of Daily Living, from giving advices to promote an healthy lifestyle to psychological monitoring. Among possible users, frail older adults deserve a special focus as they present a rich variability in terms of both alternative possible assistive scenarios (e.g., hospital or domestic environments) and caring needs that could change over time according to their health conditions. In this perspective, robot behaviors should be customized according to properly designed user models. One of the long-term research goals for SAR is the realization of robots capable of, on the one hand, personalizing assistance according to different health-related conditions/states of users and, on the other, adapting behaviors according to heterogeneous contexts as well as changing/evolving needs of users. This work proposes a solution based on a user model grounded on the international classification of functioning, disability and health (ICF) and a novel control architecture inspired by the dual-process theory. The proposed approach is general and can be deployed in many different scenarios. In this paper, we focus on a social robot in charge of the synthesis of personalized training sessions for the cognitive stimulation of older adults, customizing the adaptive verbal behavior according to the characteristics of the users and to their dynamic reactions when interacting. Evaluations with a restricted number of users show good usability of the system, a general positive attitude of users and the ability of the system to capture users personality so as to adapt the content accordingly during the verbal interaction.
期刊介绍:
User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems