Stephanie L. Moffitt, Conor Riley, Benjamin H. Ellis, Robert A. Fleming, Corey S. Thompson, Patrick D. Burton, Margaret E. Gordon, Andriy Zakutayev, Laura T. Schelhas*
{"title":"光伏组件玻璃增透防污涂层的空间分辨联合表征","authors":"Stephanie L. Moffitt, Conor Riley, Benjamin H. Ellis, Robert A. Fleming, Corey S. Thompson, Patrick D. Burton, Margaret E. Gordon, Andriy Zakutayev, Laura T. Schelhas*","doi":"10.1021/acscombsci.9b00213","DOIUrl":null,"url":null,"abstract":"<p >Characterization of photovoltaic (PV) module materials throughout different stages of service life is crucial to understanding and improving the durability of these materials. Currently the large-scale of PV modules (>1 m<sup>2</sup>) is imbalanced with the small-scale of most materials characterization tools (≤1 cm<sup>2</sup>). Furthermore, understanding degradation mechanisms often requires a combination of multiple characterization techniques. Here, we present adaptations of three standard materials characterization techniques to enable mapping characterization over moderate sample areas (≥25 cm<sup>2</sup>). Contact angle, ellipsometry, and UV–vis spectroscopy are each adapted and demonstrated on two representative samples: a commercial multifunctional coating for PV glass and an oxide combinatorial sample library. Best practices are discussed for adapting characterization techniques for large-area mapping and combining mapping information from multiple techniques.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.9b00213","citationCount":"3","resultStr":"{\"title\":\"Combined Spatially Resolved Characterization of Antireflection and Antisoiling Coatings for PV Module Glass\",\"authors\":\"Stephanie L. Moffitt, Conor Riley, Benjamin H. Ellis, Robert A. Fleming, Corey S. Thompson, Patrick D. Burton, Margaret E. Gordon, Andriy Zakutayev, Laura T. Schelhas*\",\"doi\":\"10.1021/acscombsci.9b00213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Characterization of photovoltaic (PV) module materials throughout different stages of service life is crucial to understanding and improving the durability of these materials. Currently the large-scale of PV modules (>1 m<sup>2</sup>) is imbalanced with the small-scale of most materials characterization tools (≤1 cm<sup>2</sup>). Furthermore, understanding degradation mechanisms often requires a combination of multiple characterization techniques. Here, we present adaptations of three standard materials characterization techniques to enable mapping characterization over moderate sample areas (≥25 cm<sup>2</sup>). Contact angle, ellipsometry, and UV–vis spectroscopy are each adapted and demonstrated on two representative samples: a commercial multifunctional coating for PV glass and an oxide combinatorial sample library. Best practices are discussed for adapting characterization techniques for large-area mapping and combining mapping information from multiple techniques.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acscombsci.9b00213\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscombsci.9b00213\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.9b00213","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Combined Spatially Resolved Characterization of Antireflection and Antisoiling Coatings for PV Module Glass
Characterization of photovoltaic (PV) module materials throughout different stages of service life is crucial to understanding and improving the durability of these materials. Currently the large-scale of PV modules (>1 m2) is imbalanced with the small-scale of most materials characterization tools (≤1 cm2). Furthermore, understanding degradation mechanisms often requires a combination of multiple characterization techniques. Here, we present adaptations of three standard materials characterization techniques to enable mapping characterization over moderate sample areas (≥25 cm2). Contact angle, ellipsometry, and UV–vis spectroscopy are each adapted and demonstrated on two representative samples: a commercial multifunctional coating for PV glass and an oxide combinatorial sample library. Best practices are discussed for adapting characterization techniques for large-area mapping and combining mapping information from multiple techniques.