{"title":"接受抗cd19嵌合抗原受体(CAR) t细胞治疗的急性b细胞白血病年轻成人和儿童的不良事件管理","authors":"Jae Won Yoo","doi":"10.5045/br.2023.2023026","DOIUrl":null,"url":null,"abstract":"<p><p>With impressive clinical advancements in immune effector cell therapies targeting CD19, chimeric antigen receptor (CAR) T-cell therapy has emerged as a new paradigm for treating relapsed/refractory B-cell malignancies. Currently, three second-generation CAR T-cell therapies have been approved, of which only tisagenlecleucel (tisa-cel) is approved for treating children and young adults with B-cell acute lymphoblastic leukemia (ALL) with durable remission rates of approximately 60‒90%. Although CAR T-cell therapies are considered to treat refractory B-ALL, they are associated with unique toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The severity of CAR T-cell therapy toxicities can vary according to several clinical factors. In rare cases, severe CRS can progress to a fulminant hyperinflammatory syndrome known as hemophagocytic lymphohistiocytosis, which has a poor prognosis. The first-line treatments for CRS/ICANS include tocilizumab and corticosteroids. When severe CAR T-cell toxicity is resistant to first-line treatment, an additional approach is required to manage the persistent inflammation. In addition to CRS/ICANS, CAR T-cell therapy can cause early and delayed hematological toxicity, which can predispose patients to severe infections. The use of growth factors and anti-infective prophylaxis should follow institutional guidelines according to patient-specific risk factors. This review provides a thorough summary of updated practical recommendations for managing acute and delayed adverse effects following anti-CD19 CAR T-cell therapy in adults and children.</p>","PeriodicalId":46224,"journal":{"name":"Blood Research","volume":"58 S1","pages":"S20-S28"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ba/7a/br-58-s1-s20.PMC10133856.pdf","citationCount":"1","resultStr":"{\"title\":\"Management of adverse events in young adults and children with acute B-cell lymphoblastic leukemia receiving anti-CD19 chimeric antigen receptor (CAR) T-cell therapy.\",\"authors\":\"Jae Won Yoo\",\"doi\":\"10.5045/br.2023.2023026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With impressive clinical advancements in immune effector cell therapies targeting CD19, chimeric antigen receptor (CAR) T-cell therapy has emerged as a new paradigm for treating relapsed/refractory B-cell malignancies. Currently, three second-generation CAR T-cell therapies have been approved, of which only tisagenlecleucel (tisa-cel) is approved for treating children and young adults with B-cell acute lymphoblastic leukemia (ALL) with durable remission rates of approximately 60‒90%. Although CAR T-cell therapies are considered to treat refractory B-ALL, they are associated with unique toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The severity of CAR T-cell therapy toxicities can vary according to several clinical factors. In rare cases, severe CRS can progress to a fulminant hyperinflammatory syndrome known as hemophagocytic lymphohistiocytosis, which has a poor prognosis. The first-line treatments for CRS/ICANS include tocilizumab and corticosteroids. When severe CAR T-cell toxicity is resistant to first-line treatment, an additional approach is required to manage the persistent inflammation. In addition to CRS/ICANS, CAR T-cell therapy can cause early and delayed hematological toxicity, which can predispose patients to severe infections. The use of growth factors and anti-infective prophylaxis should follow institutional guidelines according to patient-specific risk factors. This review provides a thorough summary of updated practical recommendations for managing acute and delayed adverse effects following anti-CD19 CAR T-cell therapy in adults and children.</p>\",\"PeriodicalId\":46224,\"journal\":{\"name\":\"Blood Research\",\"volume\":\"58 S1\",\"pages\":\"S20-S28\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ba/7a/br-58-s1-s20.PMC10133856.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5045/br.2023.2023026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5045/br.2023.2023026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Management of adverse events in young adults and children with acute B-cell lymphoblastic leukemia receiving anti-CD19 chimeric antigen receptor (CAR) T-cell therapy.
With impressive clinical advancements in immune effector cell therapies targeting CD19, chimeric antigen receptor (CAR) T-cell therapy has emerged as a new paradigm for treating relapsed/refractory B-cell malignancies. Currently, three second-generation CAR T-cell therapies have been approved, of which only tisagenlecleucel (tisa-cel) is approved for treating children and young adults with B-cell acute lymphoblastic leukemia (ALL) with durable remission rates of approximately 60‒90%. Although CAR T-cell therapies are considered to treat refractory B-ALL, they are associated with unique toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The severity of CAR T-cell therapy toxicities can vary according to several clinical factors. In rare cases, severe CRS can progress to a fulminant hyperinflammatory syndrome known as hemophagocytic lymphohistiocytosis, which has a poor prognosis. The first-line treatments for CRS/ICANS include tocilizumab and corticosteroids. When severe CAR T-cell toxicity is resistant to first-line treatment, an additional approach is required to manage the persistent inflammation. In addition to CRS/ICANS, CAR T-cell therapy can cause early and delayed hematological toxicity, which can predispose patients to severe infections. The use of growth factors and anti-infective prophylaxis should follow institutional guidelines according to patient-specific risk factors. This review provides a thorough summary of updated practical recommendations for managing acute and delayed adverse effects following anti-CD19 CAR T-cell therapy in adults and children.