{"title":"受体-配体结合动力学中存在定向流体动力学操纵效应的可能性。","authors":"Jan M. Antosiewicz","doi":"10.1007/s00249-023-01653-0","DOIUrl":null,"url":null,"abstract":"<div><p>In the vast majority of biologically relevant cases of receptor-ligand complex formation, the binding site of the receptor is a small part of its surface, and moreover, formation of a biologically active complex often requires a specific orientation of the ligand relative to the binding site. Before the formation of the initial form of the complex, only long-range, electrostatic and hydrodynamic interactions can act between the ligand approaching the binding site and the receptor. In this context, the question arises whether as a result of these interactions, there is a pre-orientation of the ligand towards the binding site, which to some extent would accelerate the formation of the complex. The role of electrostatic interactions in the orientation of the ligand relative to the binding site of the receptor is well documented. The analogous role of hydrodynamic interactions, although assessed as very significant by Brune and Kim (PNAS 91, 2930–2934, (1994)), is still debatable. In this article, I present the current state of knowledge on this subject and consider the possibilities of demonstrating the orienting effect of hydrodynamic interactions in the processes of receptor–ligand association, in an experimental way supported by computer simulations.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 6-7","pages":"559 - 568"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the possibility of the existence of orienting hydrodynamic steering effects in the kinetics of receptor–ligand association\",\"authors\":\"Jan M. Antosiewicz\",\"doi\":\"10.1007/s00249-023-01653-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the vast majority of biologically relevant cases of receptor-ligand complex formation, the binding site of the receptor is a small part of its surface, and moreover, formation of a biologically active complex often requires a specific orientation of the ligand relative to the binding site. Before the formation of the initial form of the complex, only long-range, electrostatic and hydrodynamic interactions can act between the ligand approaching the binding site and the receptor. In this context, the question arises whether as a result of these interactions, there is a pre-orientation of the ligand towards the binding site, which to some extent would accelerate the formation of the complex. The role of electrostatic interactions in the orientation of the ligand relative to the binding site of the receptor is well documented. The analogous role of hydrodynamic interactions, although assessed as very significant by Brune and Kim (PNAS 91, 2930–2934, (1994)), is still debatable. In this article, I present the current state of knowledge on this subject and consider the possibilities of demonstrating the orienting effect of hydrodynamic interactions in the processes of receptor–ligand association, in an experimental way supported by computer simulations.</p></div>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\"52 6-7\",\"pages\":\"559 - 568\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00249-023-01653-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01653-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
On the possibility of the existence of orienting hydrodynamic steering effects in the kinetics of receptor–ligand association
In the vast majority of biologically relevant cases of receptor-ligand complex formation, the binding site of the receptor is a small part of its surface, and moreover, formation of a biologically active complex often requires a specific orientation of the ligand relative to the binding site. Before the formation of the initial form of the complex, only long-range, electrostatic and hydrodynamic interactions can act between the ligand approaching the binding site and the receptor. In this context, the question arises whether as a result of these interactions, there is a pre-orientation of the ligand towards the binding site, which to some extent would accelerate the formation of the complex. The role of electrostatic interactions in the orientation of the ligand relative to the binding site of the receptor is well documented. The analogous role of hydrodynamic interactions, although assessed as very significant by Brune and Kim (PNAS 91, 2930–2934, (1994)), is still debatable. In this article, I present the current state of knowledge on this subject and consider the possibilities of demonstrating the orienting effect of hydrodynamic interactions in the processes of receptor–ligand association, in an experimental way supported by computer simulations.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.