Ashish A Gawai, Kailash R Biyani, Sanjib Das, Ganesh G Tapadiya, Santosh N Mokale, Sachin A Dhawale
{"title":"新型非典型抗精神病药物含铬2- 1苯并噻唑-2-氨基衍生物的设计、合成、分子对接及初步药理筛选","authors":"Ashish A Gawai, Kailash R Biyani, Sanjib Das, Ganesh G Tapadiya, Santosh N Mokale, Sachin A Dhawale","doi":"10.2174/1573409919666230202105207","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mental disorders are very serious complicated disorders. Schizophrenia is one of the most baffling mental disorders. The new series 7-(2-(benzo[d]thiazol-2- ylamino)ethoxy)-4-methyl-2H-chromen-2- synthesized in search of newer compounds for Schizophrenia.</p><p><strong>Methods: </strong>Synthesis is done by refluxing in dry pyridine with various substituted 2-amino benzothiazoles derivatives (3a-3k) and 7-(2-Chloroethoxy)-4-methyl-2H-chromen-2-one (2). The molecular docking approach was used to screen these generated derivatives. Chem Bio Draw Ultra 12 was used to draw the compounds, which were then exposed to all potential conformations of compounds interacting with receptors. The Glide 7.6, Schrodinger 2017 Maestro 11.3 was used to achieve molecular docking. The Dopamine receptor 6CM4 serotonin 5TUD PDBs were acquired from the database of Brookhaven Protein. Using the OPLS 2005 force field, the ligand-protein hydrogen-bond network was acquired, along with the overall energy reduced. A glide score was used to rate the docking poses.</p><p><strong>Results: </strong>The produced compounds have been identified with the use of analytical and spectral data. All of the produced substances were tested and analyzed for serotonin 5HT2 antagonistic and dopamine D2 activity, which can be considered as a measure of typical antipsychotic properties.</p><p><strong>Conclusion: </strong>Compounds 4b, 4c, 4e, 4g & 4i have demonstrated promising pharmacological action in preliminary studies. According to the preceding findings, compounds with electronwithdrawing substitutions, such as 4e & 4b, have a good atypical profile of antipsychotics.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"19 6","pages":"465-475"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design, Synthesis, Molecular Docking, and Preliminary Pharmacological Screening of some New Benzo[d]thiazol-2-ylamino Containing Chromen-2- one Derivatives with Atypical Antipsychotic Profile.\",\"authors\":\"Ashish A Gawai, Kailash R Biyani, Sanjib Das, Ganesh G Tapadiya, Santosh N Mokale, Sachin A Dhawale\",\"doi\":\"10.2174/1573409919666230202105207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Mental disorders are very serious complicated disorders. Schizophrenia is one of the most baffling mental disorders. The new series 7-(2-(benzo[d]thiazol-2- ylamino)ethoxy)-4-methyl-2H-chromen-2- synthesized in search of newer compounds for Schizophrenia.</p><p><strong>Methods: </strong>Synthesis is done by refluxing in dry pyridine with various substituted 2-amino benzothiazoles derivatives (3a-3k) and 7-(2-Chloroethoxy)-4-methyl-2H-chromen-2-one (2). The molecular docking approach was used to screen these generated derivatives. Chem Bio Draw Ultra 12 was used to draw the compounds, which were then exposed to all potential conformations of compounds interacting with receptors. The Glide 7.6, Schrodinger 2017 Maestro 11.3 was used to achieve molecular docking. The Dopamine receptor 6CM4 serotonin 5TUD PDBs were acquired from the database of Brookhaven Protein. Using the OPLS 2005 force field, the ligand-protein hydrogen-bond network was acquired, along with the overall energy reduced. A glide score was used to rate the docking poses.</p><p><strong>Results: </strong>The produced compounds have been identified with the use of analytical and spectral data. All of the produced substances were tested and analyzed for serotonin 5HT2 antagonistic and dopamine D2 activity, which can be considered as a measure of typical antipsychotic properties.</p><p><strong>Conclusion: </strong>Compounds 4b, 4c, 4e, 4g & 4i have demonstrated promising pharmacological action in preliminary studies. According to the preceding findings, compounds with electronwithdrawing substitutions, such as 4e & 4b, have a good atypical profile of antipsychotics.</p>\",\"PeriodicalId\":10886,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\"19 6\",\"pages\":\"465-475\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1573409919666230202105207\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1573409919666230202105207","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design, Synthesis, Molecular Docking, and Preliminary Pharmacological Screening of some New Benzo[d]thiazol-2-ylamino Containing Chromen-2- one Derivatives with Atypical Antipsychotic Profile.
Introduction: Mental disorders are very serious complicated disorders. Schizophrenia is one of the most baffling mental disorders. The new series 7-(2-(benzo[d]thiazol-2- ylamino)ethoxy)-4-methyl-2H-chromen-2- synthesized in search of newer compounds for Schizophrenia.
Methods: Synthesis is done by refluxing in dry pyridine with various substituted 2-amino benzothiazoles derivatives (3a-3k) and 7-(2-Chloroethoxy)-4-methyl-2H-chromen-2-one (2). The molecular docking approach was used to screen these generated derivatives. Chem Bio Draw Ultra 12 was used to draw the compounds, which were then exposed to all potential conformations of compounds interacting with receptors. The Glide 7.6, Schrodinger 2017 Maestro 11.3 was used to achieve molecular docking. The Dopamine receptor 6CM4 serotonin 5TUD PDBs were acquired from the database of Brookhaven Protein. Using the OPLS 2005 force field, the ligand-protein hydrogen-bond network was acquired, along with the overall energy reduced. A glide score was used to rate the docking poses.
Results: The produced compounds have been identified with the use of analytical and spectral data. All of the produced substances were tested and analyzed for serotonin 5HT2 antagonistic and dopamine D2 activity, which can be considered as a measure of typical antipsychotic properties.
Conclusion: Compounds 4b, 4c, 4e, 4g & 4i have demonstrated promising pharmacological action in preliminary studies. According to the preceding findings, compounds with electronwithdrawing substitutions, such as 4e & 4b, have a good atypical profile of antipsychotics.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.