Wen Shan, Zhiping Yang, Junzi Huang, Musen Lin, Yan Zhao, Yan Hu, Ran Yan, Xi Wu
{"title":"基于网络药理学的毛细蒿抗药物性肝损伤的植物活性化学物质及分子机制研究","authors":"Wen Shan, Zhiping Yang, Junzi Huang, Musen Lin, Yan Zhao, Yan Hu, Ran Yan, Xi Wu","doi":"10.2174/1573409919666230301092720","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artemisiae capillariae (Yinchen, YC) is a well-known herbal medicine used to treat drug-induced liver diseases, while the bioactive phytochemicals and pharmacological targets of YC remain unclear.</p><p><strong>Objective: </strong>The study aimed to probe the key active components in YC and determine the potential molecular mechanisms of YC protect against DILI.</p><p><strong>Methods: </strong>In this study, we first delved into the active chemicals and targets of YC, identified potential anti-AILI targets for YC, mapped the components-targets network, performed proteinprotein interaction (PPI) analysis, gene ontology (GO) enrichment, and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analyses of the action targets. This led to figure out the liver protective mechanism of YC against AILI. Analyzing the molecular docking of key targets, binding domain of ingredients and targets reveals the effective interaction, and the binding energy explains the efficiency and stability of the interactions.</p><p><strong>Results: </strong>Network analysis identified 53 components in YC; by systematic screening 13 compounds were selected, which were associated with 123 AILI-related genes. The core ingredients were quercetin, capillarisin and Skrofulein, and the identified crucial genes were AKT1, TNF, and IL6. The GO and KEGG pathway enrichment analysis results indicated that the anti-AILI targets of YC mainly take a part in the regulation of oxidative stress and immune, with related signaling pathways including PI3K/AKT and IL17. Furthermore, the binding pockets of YC bioactive ingredients and key targets were revealed, and the binding ability was proved by molecular docking analysis.</p><p><strong>Conclusion: </strong>This study has revealed the potential bioactive molecules and mechanism of YC in AILI and provided a possible strategy for the identification of active phytochemicals against druginduced liver injury.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"19 6","pages":"476-489"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioactive Phytochemicals and Molecular Mechanisms of <i>Artemisiae capillariae</i> against Drug Induced Liver Injury based on Network Pharmacology.\",\"authors\":\"Wen Shan, Zhiping Yang, Junzi Huang, Musen Lin, Yan Zhao, Yan Hu, Ran Yan, Xi Wu\",\"doi\":\"10.2174/1573409919666230301092720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Artemisiae capillariae (Yinchen, YC) is a well-known herbal medicine used to treat drug-induced liver diseases, while the bioactive phytochemicals and pharmacological targets of YC remain unclear.</p><p><strong>Objective: </strong>The study aimed to probe the key active components in YC and determine the potential molecular mechanisms of YC protect against DILI.</p><p><strong>Methods: </strong>In this study, we first delved into the active chemicals and targets of YC, identified potential anti-AILI targets for YC, mapped the components-targets network, performed proteinprotein interaction (PPI) analysis, gene ontology (GO) enrichment, and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analyses of the action targets. This led to figure out the liver protective mechanism of YC against AILI. Analyzing the molecular docking of key targets, binding domain of ingredients and targets reveals the effective interaction, and the binding energy explains the efficiency and stability of the interactions.</p><p><strong>Results: </strong>Network analysis identified 53 components in YC; by systematic screening 13 compounds were selected, which were associated with 123 AILI-related genes. The core ingredients were quercetin, capillarisin and Skrofulein, and the identified crucial genes were AKT1, TNF, and IL6. The GO and KEGG pathway enrichment analysis results indicated that the anti-AILI targets of YC mainly take a part in the regulation of oxidative stress and immune, with related signaling pathways including PI3K/AKT and IL17. Furthermore, the binding pockets of YC bioactive ingredients and key targets were revealed, and the binding ability was proved by molecular docking analysis.</p><p><strong>Conclusion: </strong>This study has revealed the potential bioactive molecules and mechanism of YC in AILI and provided a possible strategy for the identification of active phytochemicals against druginduced liver injury.</p>\",\"PeriodicalId\":10886,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\"19 6\",\"pages\":\"476-489\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1573409919666230301092720\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1573409919666230301092720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Bioactive Phytochemicals and Molecular Mechanisms of Artemisiae capillariae against Drug Induced Liver Injury based on Network Pharmacology.
Background: Artemisiae capillariae (Yinchen, YC) is a well-known herbal medicine used to treat drug-induced liver diseases, while the bioactive phytochemicals and pharmacological targets of YC remain unclear.
Objective: The study aimed to probe the key active components in YC and determine the potential molecular mechanisms of YC protect against DILI.
Methods: In this study, we first delved into the active chemicals and targets of YC, identified potential anti-AILI targets for YC, mapped the components-targets network, performed proteinprotein interaction (PPI) analysis, gene ontology (GO) enrichment, and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analyses of the action targets. This led to figure out the liver protective mechanism of YC against AILI. Analyzing the molecular docking of key targets, binding domain of ingredients and targets reveals the effective interaction, and the binding energy explains the efficiency and stability of the interactions.
Results: Network analysis identified 53 components in YC; by systematic screening 13 compounds were selected, which were associated with 123 AILI-related genes. The core ingredients were quercetin, capillarisin and Skrofulein, and the identified crucial genes were AKT1, TNF, and IL6. The GO and KEGG pathway enrichment analysis results indicated that the anti-AILI targets of YC mainly take a part in the regulation of oxidative stress and immune, with related signaling pathways including PI3K/AKT and IL17. Furthermore, the binding pockets of YC bioactive ingredients and key targets were revealed, and the binding ability was proved by molecular docking analysis.
Conclusion: This study has revealed the potential bioactive molecules and mechanism of YC in AILI and provided a possible strategy for the identification of active phytochemicals against druginduced liver injury.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.