{"title":"乳品甜点用纳米胶囊化当归精油的制备:理化、流变和感官特性","authors":"Narin Mhemmedamin Nanakali","doi":"10.1049/nbt2.12112","DOIUrl":null,"url":null,"abstract":"<p>In this study, the nanoemulsions containing angelica essential oil (AEO) was used as a novel nano-carrier for enrichment of dairy dessert. Firstly, oil-in-water nanoemulsions were prepared by different levels of GE (1%, 5%, 10%, and 15%) as the dispersed phase, Tween 80 as surfactant with a constant surfactant to essential oil ratio (1:1), and distillated water as a continuous phase. Droplet size, free radical scavenging capacity, antimicrobial activity against gram-positive (<i>Staphylococcus aureus</i> (<i>25923 ATCC</i>)) and gram-negative (<i>Escherichia coli H7 O157 (700728 ATCC</i>)) were evaluated for produced nanoemulsions. The mean droplet size of nanoemulsion increased from 75 to 95 nm and antioxidant capacity also enhanced from 15.4% to 30.2% by increasing AEO level from 1% to 15%. Antimicrobial analysis by disk diffusion methods for nanoemulsions containing different levels of AEO cleared that nanoemulsions with high levels of AEO showed the stronger antimicrobial activity against both used bacteria and especially more activity against <i>Staphylococcus aureus</i>. The results of the total count and yeast and mould count show that the nanoemulsions with different levels of AEO have been effective on the number of microorganisms, particularly during storage. The incorporation of pure essential oil and nanoemulsions with different levels of AEO did not affect significantly the pH of different dessert samples however, they affected the dry matter and free radical scavenging capacity. Adding of nanoemulsions with different levels of AEO to the desserts had a considerable effect on the rheological properties including apparent viscosity, Gʹ, G\", Tan <i>δ</i> and complex viscosity and all samples showed shear-thining behaviour. Results from organoleptic characteristics (taste, odour colour, mouthfeel and total acceptance) showed that enriched samples by nanoemulsions, particularly with higher level of AEO had higher sensorial scores. In general, samples containing free AEO (not encapsulated) had the lower scores in all organoleptic characteristics.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 3","pages":"171-181"},"PeriodicalIF":3.8000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12112","citationCount":"2","resultStr":"{\"title\":\"Fabrication of nano-encapsulated angelica (Heracleum persicum) essential oil for enriching dairy dessert: Physicochemical, rheological and sensorial properties\",\"authors\":\"Narin Mhemmedamin Nanakali\",\"doi\":\"10.1049/nbt2.12112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the nanoemulsions containing angelica essential oil (AEO) was used as a novel nano-carrier for enrichment of dairy dessert. Firstly, oil-in-water nanoemulsions were prepared by different levels of GE (1%, 5%, 10%, and 15%) as the dispersed phase, Tween 80 as surfactant with a constant surfactant to essential oil ratio (1:1), and distillated water as a continuous phase. Droplet size, free radical scavenging capacity, antimicrobial activity against gram-positive (<i>Staphylococcus aureus</i> (<i>25923 ATCC</i>)) and gram-negative (<i>Escherichia coli H7 O157 (700728 ATCC</i>)) were evaluated for produced nanoemulsions. The mean droplet size of nanoemulsion increased from 75 to 95 nm and antioxidant capacity also enhanced from 15.4% to 30.2% by increasing AEO level from 1% to 15%. Antimicrobial analysis by disk diffusion methods for nanoemulsions containing different levels of AEO cleared that nanoemulsions with high levels of AEO showed the stronger antimicrobial activity against both used bacteria and especially more activity against <i>Staphylococcus aureus</i>. The results of the total count and yeast and mould count show that the nanoemulsions with different levels of AEO have been effective on the number of microorganisms, particularly during storage. The incorporation of pure essential oil and nanoemulsions with different levels of AEO did not affect significantly the pH of different dessert samples however, they affected the dry matter and free radical scavenging capacity. Adding of nanoemulsions with different levels of AEO to the desserts had a considerable effect on the rheological properties including apparent viscosity, Gʹ, G\\\", Tan <i>δ</i> and complex viscosity and all samples showed shear-thining behaviour. Results from organoleptic characteristics (taste, odour colour, mouthfeel and total acceptance) showed that enriched samples by nanoemulsions, particularly with higher level of AEO had higher sensorial scores. In general, samples containing free AEO (not encapsulated) had the lower scores in all organoleptic characteristics.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"17 3\",\"pages\":\"171-181\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12112\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12112\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12112","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fabrication of nano-encapsulated angelica (Heracleum persicum) essential oil for enriching dairy dessert: Physicochemical, rheological and sensorial properties
In this study, the nanoemulsions containing angelica essential oil (AEO) was used as a novel nano-carrier for enrichment of dairy dessert. Firstly, oil-in-water nanoemulsions were prepared by different levels of GE (1%, 5%, 10%, and 15%) as the dispersed phase, Tween 80 as surfactant with a constant surfactant to essential oil ratio (1:1), and distillated water as a continuous phase. Droplet size, free radical scavenging capacity, antimicrobial activity against gram-positive (Staphylococcus aureus (25923 ATCC)) and gram-negative (Escherichia coli H7 O157 (700728 ATCC)) were evaluated for produced nanoemulsions. The mean droplet size of nanoemulsion increased from 75 to 95 nm and antioxidant capacity also enhanced from 15.4% to 30.2% by increasing AEO level from 1% to 15%. Antimicrobial analysis by disk diffusion methods for nanoemulsions containing different levels of AEO cleared that nanoemulsions with high levels of AEO showed the stronger antimicrobial activity against both used bacteria and especially more activity against Staphylococcus aureus. The results of the total count and yeast and mould count show that the nanoemulsions with different levels of AEO have been effective on the number of microorganisms, particularly during storage. The incorporation of pure essential oil and nanoemulsions with different levels of AEO did not affect significantly the pH of different dessert samples however, they affected the dry matter and free radical scavenging capacity. Adding of nanoemulsions with different levels of AEO to the desserts had a considerable effect on the rheological properties including apparent viscosity, Gʹ, G", Tan δ and complex viscosity and all samples showed shear-thining behaviour. Results from organoleptic characteristics (taste, odour colour, mouthfeel and total acceptance) showed that enriched samples by nanoemulsions, particularly with higher level of AEO had higher sensorial scores. In general, samples containing free AEO (not encapsulated) had the lower scores in all organoleptic characteristics.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf