Vincent P Kunze, Juan M Angueyra, John M Ball, Michael B Thomsen, Xiaoyi Li, Adit Sabnis, Francisco M Nadal-Nicolás, Wei Li
{"title":"Neurexin 3是哺乳动物视网膜中特定的S锥到S锥双极细胞突触所必需的。","authors":"Vincent P Kunze, Juan M Angueyra, John M Ball, Michael B Thomsen, Xiaoyi Li, Adit Sabnis, Francisco M Nadal-Nicolás, Wei Li","doi":"10.1101/2023.02.13.527055","DOIUrl":null,"url":null,"abstract":"<p><p>Precise wiring within sensory systems is critical for the accurate transmission of information. In the visual system, S-cone photoreceptors specialize in detecting short-wavelength light, crucial to color perception and environmental cue detection. S-cones form specific synapses with S-cone bipolar cells (SCBCs), a connection that is remarkably consistent across species. Yet, the molecular mechanisms guiding this specificity remain unexplored. To address this, we used the cone-dominant ground squirrel for deep-sequencing of cone subtype transcriptomes and identified Nrxn3 as an essential molecule for the S-cone to SCBC synapse. Using transgenic mouse models, we further examined the role of Nrxn3 in S-cones and discovered a significant reduction of SCBC connections in the absence of Nrxn3. This finding extends the known functions of neurexins, typically associated with synapse regulation, by highlighting their essential role in a specific synaptic connection for the first time. Moreover, the differentially expressed genes identified here pave the way for further investigations into the unique functions of cone subtypes.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/8d/nihpp-2023.02.13.527055v1.PMC10002642.pdf","citationCount":"0","resultStr":"{\"title\":\"Neurexin 3 is Essential for the Specific Wiring of a Color Pathway in the Mammalian Retina.\",\"authors\":\"Vincent P Kunze, Juan M Angueyra, John M Ball, Michael B Thomsen, Xiaoyi Li, Adit Sabnis, Francisco M Nadal-Nicolás, Wei Li\",\"doi\":\"10.1101/2023.02.13.527055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precise wiring within sensory systems is critical for the accurate transmission of information. In the visual system, S-cone photoreceptors specialize in detecting short-wavelength light, crucial to color perception and environmental cue detection. S-cones form specific synapses with S-cone bipolar cells (SCBCs), a connection that is remarkably consistent across species. Yet, the molecular mechanisms guiding this specificity remain unexplored. To address this, we used the cone-dominant ground squirrel for deep-sequencing of cone subtype transcriptomes and identified Nrxn3 as an essential molecule for the S-cone to SCBC synapse. Using transgenic mouse models, we further examined the role of Nrxn3 in S-cones and discovered a significant reduction of SCBC connections in the absence of Nrxn3. This finding extends the known functions of neurexins, typically associated with synapse regulation, by highlighting their essential role in a specific synaptic connection for the first time. Moreover, the differentially expressed genes identified here pave the way for further investigations into the unique functions of cone subtypes.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/8d/nihpp-2023.02.13.527055v1.PMC10002642.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.02.13.527055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.02.13.527055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neurexin 3 is Essential for the Specific Wiring of a Color Pathway in the Mammalian Retina.
Precise wiring within sensory systems is critical for the accurate transmission of information. In the visual system, S-cone photoreceptors specialize in detecting short-wavelength light, crucial to color perception and environmental cue detection. S-cones form specific synapses with S-cone bipolar cells (SCBCs), a connection that is remarkably consistent across species. Yet, the molecular mechanisms guiding this specificity remain unexplored. To address this, we used the cone-dominant ground squirrel for deep-sequencing of cone subtype transcriptomes and identified Nrxn3 as an essential molecule for the S-cone to SCBC synapse. Using transgenic mouse models, we further examined the role of Nrxn3 in S-cones and discovered a significant reduction of SCBC connections in the absence of Nrxn3. This finding extends the known functions of neurexins, typically associated with synapse regulation, by highlighting their essential role in a specific synaptic connection for the first time. Moreover, the differentially expressed genes identified here pave the way for further investigations into the unique functions of cone subtypes.