Jad Beyhum, Jean-Pierre Florens, Ingrid Van Keilegom
{"title":"竞争风险模型中混淆的非参数工具方法。","authors":"Jad Beyhum, Jean-Pierre Florens, Ingrid Van Keilegom","doi":"10.1007/s10985-023-09599-3","DOIUrl":null,"url":null,"abstract":"<p><p>This paper discusses nonparametric identification and estimation of the causal effect of a treatment in the presence of confounding, competing risks and random right-censoring. Our identification strategy is based on an instrumental variable. We show that the competing risks model generates a nonparametric quantile instrumental regression problem. Quantile treatment effects on the subdistribution function can be recovered from the regression function. A distinguishing feature of the model is that censoring and competing risks prevent identification at some quantiles. We characterize the set of quantiles for which exact identification is possible and give partial identification results for other quantiles. We outline an estimation procedure and discuss its properties. The finite sample performance of the estimator is evaluated through simulations. We apply the proposed method to the Health Insurance Plan of Greater New York experiment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nonparametric instrumental approach to confounding in competing risks models.\",\"authors\":\"Jad Beyhum, Jean-Pierre Florens, Ingrid Van Keilegom\",\"doi\":\"10.1007/s10985-023-09599-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper discusses nonparametric identification and estimation of the causal effect of a treatment in the presence of confounding, competing risks and random right-censoring. Our identification strategy is based on an instrumental variable. We show that the competing risks model generates a nonparametric quantile instrumental regression problem. Quantile treatment effects on the subdistribution function can be recovered from the regression function. A distinguishing feature of the model is that censoring and competing risks prevent identification at some quantiles. We characterize the set of quantiles for which exact identification is possible and give partial identification results for other quantiles. We outline an estimation procedure and discuss its properties. The finite sample performance of the estimator is evaluated through simulations. We apply the proposed method to the Health Insurance Plan of Greater New York experiment.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-023-09599-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09599-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A nonparametric instrumental approach to confounding in competing risks models.
This paper discusses nonparametric identification and estimation of the causal effect of a treatment in the presence of confounding, competing risks and random right-censoring. Our identification strategy is based on an instrumental variable. We show that the competing risks model generates a nonparametric quantile instrumental regression problem. Quantile treatment effects on the subdistribution function can be recovered from the regression function. A distinguishing feature of the model is that censoring and competing risks prevent identification at some quantiles. We characterize the set of quantiles for which exact identification is possible and give partial identification results for other quantiles. We outline an estimation procedure and discuss its properties. The finite sample performance of the estimator is evaluated through simulations. We apply the proposed method to the Health Insurance Plan of Greater New York experiment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.