比较薄型低散射制备物的共聚焦和双光子 Ca2+ 成像。

IF 2.4 Q3 BIOPHYSICS Biophysical reports Pub Date : 2023-04-20 eCollection Date: 2023-06-14 DOI:10.1016/j.bpr.2023.100109
Jinbo Cheng, Shane M McMahon, David W Piston, Meyer B Jackson
{"title":"比较薄型低散射制备物的共聚焦和双光子 Ca2+ 成像。","authors":"Jinbo Cheng, Shane M McMahon, David W Piston, Meyer B Jackson","doi":"10.1016/j.bpr.2023.100109","DOIUrl":null,"url":null,"abstract":"<p><p>Ca<sup>2+</sup> imaging provides insight into biological processes ranging from subcellular dynamics to neural network activity. Two-photon microscopy has assumed a dominant role in Ca<sup>2+</sup> imaging. The longer wavelength infra-red illumination undergoes less scattering, and absorption is confined to the focal plane. Two-photon imaging can thus penetrate thick tissue ∼10-fold more deeply than single-photon visible imaging to make two-photon microscopy an exceptionally powerful method for probing function in intact brain. However, two-photon excitation produces photobleaching and photodamage that increase very steeply with light intensity, limiting how strongly one can illuminate. In thin samples, illumination intensity can assume a dominant role in determining signal quality, raising the possibility that single-photon microscopy may be preferable. We therefore tested laser scanning single-photon and two-photon microscopy side by side with Ca<sup>2+</sup> imaging in neuronal compartments at the surface of a brain slice. We optimized illumination intensity for each light source to obtain the brightest signal without photobleaching. Intracellular Ca<sup>2+</sup> rises elicited by one action potential had twice the signal/noise ratio with confocal as with two-photon imaging in axons, were 31% higher in dendrites, and about the same in cell bodies. The superior performance of confocal imaging in finer neuronal processes likely reflects the dominance of shot noise when fluorescence is dim. Thus, when out-of-focus absorption and scattering are not issues, single-photon confocal imaging can yield better quality signals than two-photon microscopy.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/25/93/main.PMC10192416.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparing confocal and two-photon Ca<sup>2+</sup> imaging of thin low-scattering preparations.\",\"authors\":\"Jinbo Cheng, Shane M McMahon, David W Piston, Meyer B Jackson\",\"doi\":\"10.1016/j.bpr.2023.100109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ca<sup>2+</sup> imaging provides insight into biological processes ranging from subcellular dynamics to neural network activity. Two-photon microscopy has assumed a dominant role in Ca<sup>2+</sup> imaging. The longer wavelength infra-red illumination undergoes less scattering, and absorption is confined to the focal plane. Two-photon imaging can thus penetrate thick tissue ∼10-fold more deeply than single-photon visible imaging to make two-photon microscopy an exceptionally powerful method for probing function in intact brain. However, two-photon excitation produces photobleaching and photodamage that increase very steeply with light intensity, limiting how strongly one can illuminate. In thin samples, illumination intensity can assume a dominant role in determining signal quality, raising the possibility that single-photon microscopy may be preferable. We therefore tested laser scanning single-photon and two-photon microscopy side by side with Ca<sup>2+</sup> imaging in neuronal compartments at the surface of a brain slice. We optimized illumination intensity for each light source to obtain the brightest signal without photobleaching. Intracellular Ca<sup>2+</sup> rises elicited by one action potential had twice the signal/noise ratio with confocal as with two-photon imaging in axons, were 31% higher in dendrites, and about the same in cell bodies. The superior performance of confocal imaging in finer neuronal processes likely reflects the dominance of shot noise when fluorescence is dim. Thus, when out-of-focus absorption and scattering are not issues, single-photon confocal imaging can yield better quality signals than two-photon microscopy.</p>\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/25/93/main.PMC10192416.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpr.2023.100109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2023.100109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

Ca2+ 成像可让人们深入了解从亚细胞动力学到神经网络活动等各种生物过程。双光子显微镜在 Ca2+ 成像中占据主导地位。波长较长的红外照明散射较少,吸收仅限于焦平面。因此,与单光子可见光成像相比,双光子成像可穿透厚组织 10 倍以上,从而使双光子显微镜成为探测完整大脑功能的一种异常强大的方法。然而,双光子激发产生的光漂白和光损伤会随着光照强度的增加而陡增,从而限制了光照强度。在较薄的样本中,照明强度在决定信号质量方面起着主导作用,因此单光子显微镜可能更为可取。因此,我们对激光扫描单光子显微镜和双光子显微镜与脑片表面神经元区室的 Ca2+ 成像进行了并行测试。我们优化了每种光源的照明强度,以获得无光漂白的最亮信号。一个动作电位引起的细胞内 Ca2+ 上升在轴突中的信号/噪声比是双光子成像的两倍,在树突中高 31%,在细胞体中大致相同。在更精细的神经元过程中,共焦成像的优越性能可能反映了在荧光暗淡时镜头噪声的主导地位。因此,在不存在焦外吸收和散射的情况下,单光子共聚焦成像可比双光子显微镜获得更高质量的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing confocal and two-photon Ca2+ imaging of thin low-scattering preparations.

Ca2+ imaging provides insight into biological processes ranging from subcellular dynamics to neural network activity. Two-photon microscopy has assumed a dominant role in Ca2+ imaging. The longer wavelength infra-red illumination undergoes less scattering, and absorption is confined to the focal plane. Two-photon imaging can thus penetrate thick tissue ∼10-fold more deeply than single-photon visible imaging to make two-photon microscopy an exceptionally powerful method for probing function in intact brain. However, two-photon excitation produces photobleaching and photodamage that increase very steeply with light intensity, limiting how strongly one can illuminate. In thin samples, illumination intensity can assume a dominant role in determining signal quality, raising the possibility that single-photon microscopy may be preferable. We therefore tested laser scanning single-photon and two-photon microscopy side by side with Ca2+ imaging in neuronal compartments at the surface of a brain slice. We optimized illumination intensity for each light source to obtain the brightest signal without photobleaching. Intracellular Ca2+ rises elicited by one action potential had twice the signal/noise ratio with confocal as with two-photon imaging in axons, were 31% higher in dendrites, and about the same in cell bodies. The superior performance of confocal imaging in finer neuronal processes likely reflects the dominance of shot noise when fluorescence is dim. Thus, when out-of-focus absorption and scattering are not issues, single-photon confocal imaging can yield better quality signals than two-photon microscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
Development of a digital amplifier system for cut-open oocyte electrophysiology. Structural studies of the human α1 glycine receptor via site-specific chemical cross-linking coupled with mass spectrometry. Expression level of cardiac ryanodine receptors dictates properties of Ca2+-induced Ca2+ release. Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network. Magnetic field platform for experiments on well-mixed and spatially structured microbial populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1