Bennet von Skarczinski, Mathias Raschke, Frank Teuteberg
{"title":"德国组织最大网络事件损失建模:一项实证研究和修正的极值分布方法。","authors":"Bennet von Skarczinski, Mathias Raschke, Frank Teuteberg","doi":"10.1057/s41288-023-00293-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cyber incidents are among the most critical business risks for organisations and can lead to large financial losses. However, previous research on loss modelling is based on unassured data sources because the representativeness and completeness of op-risk databases cannot be assured. Moreover, there is a lack of modelling approaches that focus on the tail behaviour and adequately account for extreme losses. In this paper, we introduce a novel 'tempered' generalised extreme value (GEV) approach. Based on a stratified random sample of 5000 interviewed German organisations, we model different loss distributions and compare them to our empirical data using graphical analysis and goodness-of-fit tests. We differentiate various subsamples (industry, size, attack type, loss type) and find our modified GEV outperforms other distributions, such as the lognormal and Weibull distributions. Finally, we calculate losses for the German economy, present application examples, derive implications as well as discuss the comparison of loss estimates in the literature.</p>","PeriodicalId":75009,"journal":{"name":"The Geneva papers on risk and insurance. Issues and practice","volume":"48 2","pages":"463-501"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100641/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modelling maximum cyber incident losses of German organisations: an empirical study and modified extreme value distribution approach.\",\"authors\":\"Bennet von Skarczinski, Mathias Raschke, Frank Teuteberg\",\"doi\":\"10.1057/s41288-023-00293-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyber incidents are among the most critical business risks for organisations and can lead to large financial losses. However, previous research on loss modelling is based on unassured data sources because the representativeness and completeness of op-risk databases cannot be assured. Moreover, there is a lack of modelling approaches that focus on the tail behaviour and adequately account for extreme losses. In this paper, we introduce a novel 'tempered' generalised extreme value (GEV) approach. Based on a stratified random sample of 5000 interviewed German organisations, we model different loss distributions and compare them to our empirical data using graphical analysis and goodness-of-fit tests. We differentiate various subsamples (industry, size, attack type, loss type) and find our modified GEV outperforms other distributions, such as the lognormal and Weibull distributions. Finally, we calculate losses for the German economy, present application examples, derive implications as well as discuss the comparison of loss estimates in the literature.</p>\",\"PeriodicalId\":75009,\"journal\":{\"name\":\"The Geneva papers on risk and insurance. Issues and practice\",\"volume\":\"48 2\",\"pages\":\"463-501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Geneva papers on risk and insurance. Issues and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1057/s41288-023-00293-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Geneva papers on risk and insurance. Issues and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41288-023-00293-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling maximum cyber incident losses of German organisations: an empirical study and modified extreme value distribution approach.
Cyber incidents are among the most critical business risks for organisations and can lead to large financial losses. However, previous research on loss modelling is based on unassured data sources because the representativeness and completeness of op-risk databases cannot be assured. Moreover, there is a lack of modelling approaches that focus on the tail behaviour and adequately account for extreme losses. In this paper, we introduce a novel 'tempered' generalised extreme value (GEV) approach. Based on a stratified random sample of 5000 interviewed German organisations, we model different loss distributions and compare them to our empirical data using graphical analysis and goodness-of-fit tests. We differentiate various subsamples (industry, size, attack type, loss type) and find our modified GEV outperforms other distributions, such as the lognormal and Weibull distributions. Finally, we calculate losses for the German economy, present application examples, derive implications as well as discuss the comparison of loss estimates in the literature.