植物生长中的菌根共生与逆境适应:从基因到生态系统。

IF 21.3 1区 生物学 Q1 PLANT SCIENCES Annual review of plant biology Pub Date : 2023-05-22 DOI:10.1146/annurev-arplant-061722-090342
Jincai Shi, Xiaolin Wang, Ertao Wang
{"title":"植物生长中的菌根共生与逆境适应:从基因到生态系统。","authors":"Jincai Shi,&nbsp;Xiaolin Wang,&nbsp;Ertao Wang","doi":"10.1146/annurev-arplant-061722-090342","DOIUrl":null,"url":null,"abstract":"<p><p>Plant roots associate with diverse microbes (including bacteria, fungi, archaea, protists, and viruses) collectively called the root-associated microbiome. Among them, mycorrhizal fungi colonize host roots and improve their access to nutrients, usually phosphorus and nitrogen. In exchange, plants deliver photosynthetic carbon to the colonizing fungi. This nutrient exchange affects key soil processes, the carbon cycle, and plant health and therefore has a strong influence on the plant and microbe ecosystems. The framework of nutrient exchange and regulation between host plant and arbuscular mycorrhizal fungi has recently been established. The local and systemic regulation of mycorrhizal symbiosis by plant nutrient status and the autoregulation of mycorrhizae are strategies by which plants maintain a stabilizing free-market symbiosis. A better understanding of the synergistic effects between mycorrhizal fungi and mycorrhizosphere microorganisms is an essential precondition for their use as biofertilizers and bioprotectors for sustainable agriculture and forestry management.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems.\",\"authors\":\"Jincai Shi,&nbsp;Xiaolin Wang,&nbsp;Ertao Wang\",\"doi\":\"10.1146/annurev-arplant-061722-090342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant roots associate with diverse microbes (including bacteria, fungi, archaea, protists, and viruses) collectively called the root-associated microbiome. Among them, mycorrhizal fungi colonize host roots and improve their access to nutrients, usually phosphorus and nitrogen. In exchange, plants deliver photosynthetic carbon to the colonizing fungi. This nutrient exchange affects key soil processes, the carbon cycle, and plant health and therefore has a strong influence on the plant and microbe ecosystems. The framework of nutrient exchange and regulation between host plant and arbuscular mycorrhizal fungi has recently been established. The local and systemic regulation of mycorrhizal symbiosis by plant nutrient status and the autoregulation of mycorrhizae are strategies by which plants maintain a stabilizing free-market symbiosis. A better understanding of the synergistic effects between mycorrhizal fungi and mycorrhizosphere microorganisms is an essential precondition for their use as biofertilizers and bioprotectors for sustainable agriculture and forestry management.</p>\",\"PeriodicalId\":8335,\"journal\":{\"name\":\"Annual review of plant biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-arplant-061722-090342\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-061722-090342","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 17

摘要

植物根系与多种微生物(包括细菌、真菌、古生菌、原生生物和病毒)联系在一起,统称为根系相关微生物组。其中,菌根真菌定植在寄主的根上,改善寄主对营养物质的获取,通常是磷和氮。作为交换,植物将光合作用的碳传递给定居的真菌。这种养分交换影响关键的土壤过程、碳循环和植物健康,因此对植物和微生物生态系统有很强的影响。寄主植物与丛枝菌根真菌之间的营养交换和调控框架最近才建立起来。植物营养状况对菌根共生的局部和系统调节和菌根的自我调节是植物维持稳定的自由市场共生的策略。更好地了解菌根真菌和菌根圈微生物之间的协同作用是将它们用作可持续农业和林业管理的生物肥料和生物保护剂的必要前提。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems.

Plant roots associate with diverse microbes (including bacteria, fungi, archaea, protists, and viruses) collectively called the root-associated microbiome. Among them, mycorrhizal fungi colonize host roots and improve their access to nutrients, usually phosphorus and nitrogen. In exchange, plants deliver photosynthetic carbon to the colonizing fungi. This nutrient exchange affects key soil processes, the carbon cycle, and plant health and therefore has a strong influence on the plant and microbe ecosystems. The framework of nutrient exchange and regulation between host plant and arbuscular mycorrhizal fungi has recently been established. The local and systemic regulation of mycorrhizal symbiosis by plant nutrient status and the autoregulation of mycorrhizae are strategies by which plants maintain a stabilizing free-market symbiosis. A better understanding of the synergistic effects between mycorrhizal fungi and mycorrhizosphere microorganisms is an essential precondition for their use as biofertilizers and bioprotectors for sustainable agriculture and forestry management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Adaptation and the Geographic Spread of Crop Species. Environmental Control of Hypocotyl Elongation. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. Structure and Function of Auxin Transporters. Structural and Evolutionary Aspects of Plant Endocytosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1