{"title":"植物的温度感应。","authors":"Sandra M Kerbler, Philip A Wigge","doi":"10.1146/annurev-arplant-102820-102235","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature is a key environmental cue that influences the distribution and behavior of plants globally. Understanding how plants sense temperature and integrate this information into their development is important to determine how plants adapt to climate change and to apply this knowledge to the breeding of climate-resilient crops. The mechanisms of temperature perception in eukaryotes are only just beginning to be understood, with multiple molecular phenomena with inherent temperature dependencies, such as RNA melting, phytochrome dark reversion, and protein phase change, being exploited by nature to create thermosensory signaling networks. Here, we review recent progress in understanding how temperature sensing in four major pathways in <i>Arabidopsis thaliana</i> occurs: vernalization, cold stress, thermomorphogenesis, and heat stress. We discuss outstanding questions in the field and the importance of these mechanisms in the context of breeding climate-resilient crops.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Temperature Sensing in Plants.\",\"authors\":\"Sandra M Kerbler, Philip A Wigge\",\"doi\":\"10.1146/annurev-arplant-102820-102235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temperature is a key environmental cue that influences the distribution and behavior of plants globally. Understanding how plants sense temperature and integrate this information into their development is important to determine how plants adapt to climate change and to apply this knowledge to the breeding of climate-resilient crops. The mechanisms of temperature perception in eukaryotes are only just beginning to be understood, with multiple molecular phenomena with inherent temperature dependencies, such as RNA melting, phytochrome dark reversion, and protein phase change, being exploited by nature to create thermosensory signaling networks. Here, we review recent progress in understanding how temperature sensing in four major pathways in <i>Arabidopsis thaliana</i> occurs: vernalization, cold stress, thermomorphogenesis, and heat stress. We discuss outstanding questions in the field and the importance of these mechanisms in the context of breeding climate-resilient crops.</p>\",\"PeriodicalId\":8335,\"journal\":{\"name\":\"Annual review of plant biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-arplant-102820-102235\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-102820-102235","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Temperature is a key environmental cue that influences the distribution and behavior of plants globally. Understanding how plants sense temperature and integrate this information into their development is important to determine how plants adapt to climate change and to apply this knowledge to the breeding of climate-resilient crops. The mechanisms of temperature perception in eukaryotes are only just beginning to be understood, with multiple molecular phenomena with inherent temperature dependencies, such as RNA melting, phytochrome dark reversion, and protein phase change, being exploited by nature to create thermosensory signaling networks. Here, we review recent progress in understanding how temperature sensing in four major pathways in Arabidopsis thaliana occurs: vernalization, cold stress, thermomorphogenesis, and heat stress. We discuss outstanding questions in the field and the importance of these mechanisms in the context of breeding climate-resilient crops.
期刊介绍:
The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.