利用荧光标记的胶原结合蛋白片段观察耳蜗胸膜和基底膜中的胶原纤维

IF 2.4 3区 医学 Q3 NEUROSCIENCES Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2023-04-01 Epub Date: 2023-02-01 DOI:10.1007/s10162-023-00889-z
Raquel de Sousa Lobo Ferreira Querido, Xiang Ji, Rabina Lakha, Richard J Goodyear, Guy P Richardson, Christina L Vizcarra, Elizabeth S Olson
{"title":"利用荧光标记的胶原结合蛋白片段观察耳蜗胸膜和基底膜中的胶原纤维","authors":"Raquel de Sousa Lobo Ferreira Querido, Xiang Ji, Rabina Lakha, Richard J Goodyear, Guy P Richardson, Christina L Vizcarra, Elizabeth S Olson","doi":"10.1007/s10162-023-00889-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A probe that binds to unfixed collagen fibrils was used to image the shapes and fibrous properties of the TM and BM. The probe (CNA35) is derived from the bacterial adhesion protein CNA. We present confocal images of hydrated gerbil TM, BM, and other cochlear structures stained with fluorescently labeled CNA35. A primary purpose of this article is to describe the use of the CNA35 collagen probe in the cochlea.</p><p><strong>Methods: </strong>Recombinant poly-histidine-tagged CNA35 was expressed in Escherichia coli, purified by cobalt-affinity chromatography, fluorescence labeled, and further purified by gel filtration chromatography. Cochleae from freshly harvested gerbil bullae were irrigated with and then incubated in CNA35 for periods ranging from 2 h - overnight. The cochleae were fixed, decalcified, and dissected. Isolated cochlear turns were imaged by confocal microscopy.</p><p><strong>Results: </strong>The CNA35 probe stained the BM and TM, and volumetric imaging revealed the shape of these structures and the collagen fibrils within them. The limbal zone of the TM stained intensely. In samples from the cochlear base, intense staining was detected on the side of the TM that faces hair cells. In the BM pectinate zone, staining was intense at the upper and lower boundaries. The BM arcuate zone was characterized by a prominent longitudinal collagenous structure. The spiral ligament, limbus and lamina stained for collagen, and within the spiral limbus the habenula perforata were outlined with intense staining.</p><p><strong>Conclusion: </strong>The CNA35 probe provides a unique and useful view of collagenous structures in the cochlea.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":"24 2","pages":"147-157"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121988/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visualizing Collagen Fibrils in the Cochlea's Tectorial and Basilar Membranes Using a Fluorescently Labeled Collagen-Binding Protein Fragment.\",\"authors\":\"Raquel de Sousa Lobo Ferreira Querido, Xiang Ji, Rabina Lakha, Richard J Goodyear, Guy P Richardson, Christina L Vizcarra, Elizabeth S Olson\",\"doi\":\"10.1007/s10162-023-00889-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>A probe that binds to unfixed collagen fibrils was used to image the shapes and fibrous properties of the TM and BM. The probe (CNA35) is derived from the bacterial adhesion protein CNA. We present confocal images of hydrated gerbil TM, BM, and other cochlear structures stained with fluorescently labeled CNA35. A primary purpose of this article is to describe the use of the CNA35 collagen probe in the cochlea.</p><p><strong>Methods: </strong>Recombinant poly-histidine-tagged CNA35 was expressed in Escherichia coli, purified by cobalt-affinity chromatography, fluorescence labeled, and further purified by gel filtration chromatography. Cochleae from freshly harvested gerbil bullae were irrigated with and then incubated in CNA35 for periods ranging from 2 h - overnight. The cochleae were fixed, decalcified, and dissected. Isolated cochlear turns were imaged by confocal microscopy.</p><p><strong>Results: </strong>The CNA35 probe stained the BM and TM, and volumetric imaging revealed the shape of these structures and the collagen fibrils within them. The limbal zone of the TM stained intensely. In samples from the cochlear base, intense staining was detected on the side of the TM that faces hair cells. In the BM pectinate zone, staining was intense at the upper and lower boundaries. The BM arcuate zone was characterized by a prominent longitudinal collagenous structure. The spiral ligament, limbus and lamina stained for collagen, and within the spiral limbus the habenula perforata were outlined with intense staining.</p><p><strong>Conclusion: </strong>The CNA35 probe provides a unique and useful view of collagenous structures in the cochlea.</p>\",\"PeriodicalId\":56283,\"journal\":{\"name\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"volume\":\"24 2\",\"pages\":\"147-157\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121988/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10162-023-00889-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-023-00889-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:使用一种能与未固定的胶原纤维结合的探针来成像 TM 和 BM 的形状和纤维特性。探针(CNA35)来自细菌粘附蛋白 CNA。我们展示了用荧光标记的 CNA35 染色的水合沙鼠 TM、BM 和其他耳蜗结构的共聚焦图像。本文的主要目的是描述 CNA35 胶原探针在耳蜗中的应用:重组多组氨酸标记的 CNA35 在大肠杆菌中表达,经钴亲和层析纯化,荧光标记,凝胶过滤层析进一步纯化。用 CNA35 灌溉新鲜采自沙鼠鼓室的耳蜗,然后在 CNA35 中培养 2 小时至过夜。对耳蜗进行固定、脱钙和解剖。用共聚焦显微镜对分离的耳蜗进行成像:结果:CNA35探针染色了BM和TM,体积成像显示了这些结构的形状和其中的胶原纤维。TM 边缘区染色强烈。在耳蜗基底的样本中,在 TM 面向毛细胞的一侧检测到了强烈的染色。在基质栉状区,染色在上下边界都很强烈。基质弧区的特征是突出的纵向胶原结构。螺旋韧带、瓣缘和瓣膜均有胶原染色,在螺旋瓣缘内,穿孔帽状腱膜也有强烈的染色:结论:CNA35 探头可提供独特而实用的耳蜗胶原结构视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualizing Collagen Fibrils in the Cochlea's Tectorial and Basilar Membranes Using a Fluorescently Labeled Collagen-Binding Protein Fragment.

Purpose: A probe that binds to unfixed collagen fibrils was used to image the shapes and fibrous properties of the TM and BM. The probe (CNA35) is derived from the bacterial adhesion protein CNA. We present confocal images of hydrated gerbil TM, BM, and other cochlear structures stained with fluorescently labeled CNA35. A primary purpose of this article is to describe the use of the CNA35 collagen probe in the cochlea.

Methods: Recombinant poly-histidine-tagged CNA35 was expressed in Escherichia coli, purified by cobalt-affinity chromatography, fluorescence labeled, and further purified by gel filtration chromatography. Cochleae from freshly harvested gerbil bullae were irrigated with and then incubated in CNA35 for periods ranging from 2 h - overnight. The cochleae were fixed, decalcified, and dissected. Isolated cochlear turns were imaged by confocal microscopy.

Results: The CNA35 probe stained the BM and TM, and volumetric imaging revealed the shape of these structures and the collagen fibrils within them. The limbal zone of the TM stained intensely. In samples from the cochlear base, intense staining was detected on the side of the TM that faces hair cells. In the BM pectinate zone, staining was intense at the upper and lower boundaries. The BM arcuate zone was characterized by a prominent longitudinal collagenous structure. The spiral ligament, limbus and lamina stained for collagen, and within the spiral limbus the habenula perforata were outlined with intense staining.

Conclusion: The CNA35 probe provides a unique and useful view of collagenous structures in the cochlea.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
57
审稿时长
6-12 weeks
期刊介绍: JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance. Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.
期刊最新文献
Evaluating the Correlation Between Stimulus Frequency Otoacoustic Emission Group Delays and Tuning Sharpness in a Cochlear Model. Tuning and Timing of Organ of Corti Vibrations at the Apex of the Intact Chinchilla Cochlea. Vital Dye Uptake of YO-PRO-1 and DASPEI Depends Upon Mechanoelectrical Transduction Function in Zebrafish Hair Cells. Investigating the Effect of Blurring and Focusing Current in Cochlear Implant Users with the Panoramic ECAP Method. Eric Daniel Young.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1