基于惯性传感器的现场轮滑滑子技术时间事件估计。

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Applied Biomechanics Pub Date : 2023-06-01 DOI:10.1123/jab.2022-0073
Frédéric Meyer, Magne Lund-Hansen, Jan Kocbach, Trine M Seeberg, Øyvind B Sandbakk, Andreas Austeng
{"title":"基于惯性传感器的现场轮滑滑子技术时间事件估计。","authors":"Frédéric Meyer,&nbsp;Magne Lund-Hansen,&nbsp;Jan Kocbach,&nbsp;Trine M Seeberg,&nbsp;Øyvind B Sandbakk,&nbsp;Andreas Austeng","doi":"10.1123/jab.2022-0073","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to test and adapt a treadmill-developed method for determination of inner-cycle parameters and sub-technique in cross-country roller ski skating for a field application. The method is based on detecting initial and final ground contact of poles and skis during cyclic movements. Eleven athletes skied 4 laps of 2.5 km at low- and high-endurance intensities, using 2 types of skis with different rolling coefficients. Participants were equipped with inertial measurement units attached to their wrists and skis, and insoles with pressure sensors and poles with force measurements were used as reference systems. The method based on inertial measurement units was able to detect >97% of the temporal events detected with the reference system. The inner-cycle temporal parameters had a precision ranging from 49 to 59 milliseconds, corresponding to 3.9% to 13.7% of the corresponding inner-cycle duration. Overall, this study showed good reliability of using inertial measurement units on athletes' wrists and skis to determine temporal events, inner-cycle parameters, and the performed sub-techniques in cross-country roller ski skating in field conditions.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 3","pages":"204-208"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inertial Sensor-Based Estimation of Temporal Events in Skating Sub-Techniques While In-Field Roller Skiing.\",\"authors\":\"Frédéric Meyer,&nbsp;Magne Lund-Hansen,&nbsp;Jan Kocbach,&nbsp;Trine M Seeberg,&nbsp;Øyvind B Sandbakk,&nbsp;Andreas Austeng\",\"doi\":\"10.1123/jab.2022-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to test and adapt a treadmill-developed method for determination of inner-cycle parameters and sub-technique in cross-country roller ski skating for a field application. The method is based on detecting initial and final ground contact of poles and skis during cyclic movements. Eleven athletes skied 4 laps of 2.5 km at low- and high-endurance intensities, using 2 types of skis with different rolling coefficients. Participants were equipped with inertial measurement units attached to their wrists and skis, and insoles with pressure sensors and poles with force measurements were used as reference systems. The method based on inertial measurement units was able to detect >97% of the temporal events detected with the reference system. The inner-cycle temporal parameters had a precision ranging from 49 to 59 milliseconds, corresponding to 3.9% to 13.7% of the corresponding inner-cycle duration. Overall, this study showed good reliability of using inertial measurement units on athletes' wrists and skis to determine temporal events, inner-cycle parameters, and the performed sub-techniques in cross-country roller ski skating in field conditions.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\"39 3\",\"pages\":\"204-208\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2022-0073\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是测试和采用跑步机开发的方法来确定越野轮滑的内循环参数和子技术,并将其应用于现场应用。该方法是基于检测在循环运动中雪杖和滑雪板的初始和最终地面接触。11名运动员使用两种不同滚动系数的滑雪板,在低耐力和高耐力强度下滑了4圈2.5公里。参与者的手腕和滑雪板上都配备了惯性测量装置,鞋垫上装有压力传感器,鞋杆上装有力测量装置,作为参考系统。基于惯性测量单元的方法能够检测到参考系统检测到的>97%的时间事件。内周期时间参数的精度范围为49 ~ 59毫秒,对应于相应内周期时间的3.9% ~ 13.7%。总体而言,本研究表明,在野外条件下,使用运动员手腕和滑雪板上的惯性测量装置来确定越野轮滑的时间事件、内循环参数和执行的子技术具有良好的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inertial Sensor-Based Estimation of Temporal Events in Skating Sub-Techniques While In-Field Roller Skiing.

The aim of this study was to test and adapt a treadmill-developed method for determination of inner-cycle parameters and sub-technique in cross-country roller ski skating for a field application. The method is based on detecting initial and final ground contact of poles and skis during cyclic movements. Eleven athletes skied 4 laps of 2.5 km at low- and high-endurance intensities, using 2 types of skis with different rolling coefficients. Participants were equipped with inertial measurement units attached to their wrists and skis, and insoles with pressure sensors and poles with force measurements were used as reference systems. The method based on inertial measurement units was able to detect >97% of the temporal events detected with the reference system. The inner-cycle temporal parameters had a precision ranging from 49 to 59 milliseconds, corresponding to 3.9% to 13.7% of the corresponding inner-cycle duration. Overall, this study showed good reliability of using inertial measurement units on athletes' wrists and skis to determine temporal events, inner-cycle parameters, and the performed sub-techniques in cross-country roller ski skating in field conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
期刊最新文献
Role of Hip Internal Rotation Range and Foot Progression Angle for Preventing Jones Fracture During Crossover Cutting. The Effect of Step Frequency and Running Speed on the Coordination of the Pelvis and Thigh Segments During Running. Effects of Different Inertial Measurement Unit Sensor-to-Segment Calibrations on Clinical 3-Dimensional Humerothoracic Joint Angles Estimation. Enhancing Sprint Performance and Biomechanics in Semiprofessional Football Players Through Repeated-Sprint Training. Investigation of a Theoretical Model for the Rotational Shot Put Technique.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1