基于低通谱分析的随机加权不完全数据动态检索。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL Structural Dynamics-Us Pub Date : 2022-07-01 DOI:10.1063/4.0000156
Cecilia M Casadei, Ahmad Hosseinizadeh, Gebhard F X Schertler, Abbas Ourmazd, Robin Santra
{"title":"基于低通谱分析的随机加权不完全数据动态检索。","authors":"Cecilia M Casadei,&nbsp;Ahmad Hosseinizadeh,&nbsp;Gebhard F X Schertler,&nbsp;Abbas Ourmazd,&nbsp;Robin Santra","doi":"10.1063/4.0000156","DOIUrl":null,"url":null,"abstract":"<p><p>Time-resolved serial femtosecond crystallography (TR-SFX) provides access to protein dynamics on sub-picosecond timescales, and with atomic resolution. Due to the nature of the experiment, these datasets are often highly incomplete and the measured diffracted intensities are affected by partiality. To tackle these issues, one established procedure is that of splitting the data into time bins, and averaging the multiple measurements of equivalent reflections within each bin. This binning and averaging often involve a loss of information. Here, we propose an alternative approach, which we call low-pass spectral analysis (LPSA). In this method, the data are projected onto the subspace defined by a set of trigonometric functions, with frequencies up to a certain cutoff. This approach attenuates undesirable high-frequency features and facilitates retrieving the underlying dynamics. A time-lagged embedding step can be included prior to subspace projection to improve the stability of the results with respect to the parameters involved. Subsequent modal decomposition allows to produce a low-rank description of the system's evolution. Using a synthetic time-evolving model with incomplete and partial observations, we analyze the LPSA results in terms of quality of the retrieved signal, as a function of the parameters involved. We compare the performance of LPSA to that of a range of other sophisticated data analysis techniques. We show that LPSA allows to achieve excellent dynamics reconstruction at modest computational cost. Finally, we demonstrate the superiority of dynamics retrieval by LPSA compared to time binning and merging, which is, to date, the most commonly used method to extract dynamical information from TR-SFX data.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385225/pdf/","citationCount":"1","resultStr":"{\"title\":\"Dynamics retrieval from stochastically weighted incomplete data by low-pass spectral analysis.\",\"authors\":\"Cecilia M Casadei,&nbsp;Ahmad Hosseinizadeh,&nbsp;Gebhard F X Schertler,&nbsp;Abbas Ourmazd,&nbsp;Robin Santra\",\"doi\":\"10.1063/4.0000156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time-resolved serial femtosecond crystallography (TR-SFX) provides access to protein dynamics on sub-picosecond timescales, and with atomic resolution. Due to the nature of the experiment, these datasets are often highly incomplete and the measured diffracted intensities are affected by partiality. To tackle these issues, one established procedure is that of splitting the data into time bins, and averaging the multiple measurements of equivalent reflections within each bin. This binning and averaging often involve a loss of information. Here, we propose an alternative approach, which we call low-pass spectral analysis (LPSA). In this method, the data are projected onto the subspace defined by a set of trigonometric functions, with frequencies up to a certain cutoff. This approach attenuates undesirable high-frequency features and facilitates retrieving the underlying dynamics. A time-lagged embedding step can be included prior to subspace projection to improve the stability of the results with respect to the parameters involved. Subsequent modal decomposition allows to produce a low-rank description of the system's evolution. Using a synthetic time-evolving model with incomplete and partial observations, we analyze the LPSA results in terms of quality of the retrieved signal, as a function of the parameters involved. We compare the performance of LPSA to that of a range of other sophisticated data analysis techniques. We show that LPSA allows to achieve excellent dynamics reconstruction at modest computational cost. Finally, we demonstrate the superiority of dynamics retrieval by LPSA compared to time binning and merging, which is, to date, the most commonly used method to extract dynamical information from TR-SFX data.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385225/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000156\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000156","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

时间分辨序列飞秒晶体学(TR-SFX)提供了亚皮秒时间尺度和原子分辨率的蛋白质动力学。由于实验的性质,这些数据集往往是高度不完整的,测量的衍射强度受到偏见的影响。为了解决这些问题,一种已建立的程序是将数据分成时间桶,并在每个桶内平均等效反射的多个测量值。这种分组和平均通常会导致信息的丢失。在这里,我们提出了一种替代方法,我们称之为低通光谱分析(LPSA)。在这种方法中,数据被投影到由一组三角函数定义的子空间中,频率达到某个截止点。这种方法可以减弱不需要的高频特征,并有助于检索底层动态。在子空间投影之前可以加入一个时间滞后的嵌入步骤,以提高结果相对于所涉及参数的稳定性。随后的模态分解允许生成系统演化的低阶描述。利用不完全和部分观测的合成时间演化模型,我们分析了LPSA结果中检索信号的质量,作为所涉及参数的函数。我们将LPSA的性能与一系列其他复杂的数据分析技术进行了比较。我们表明LPSA可以在适度的计算成本下实现出色的动力学重建。最后,我们证明了LPSA动态检索相对于时间分组和合并的优势,时间分组和合并是迄今为止最常用的从TR-SFX数据中提取动态信息的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics retrieval from stochastically weighted incomplete data by low-pass spectral analysis.

Time-resolved serial femtosecond crystallography (TR-SFX) provides access to protein dynamics on sub-picosecond timescales, and with atomic resolution. Due to the nature of the experiment, these datasets are often highly incomplete and the measured diffracted intensities are affected by partiality. To tackle these issues, one established procedure is that of splitting the data into time bins, and averaging the multiple measurements of equivalent reflections within each bin. This binning and averaging often involve a loss of information. Here, we propose an alternative approach, which we call low-pass spectral analysis (LPSA). In this method, the data are projected onto the subspace defined by a set of trigonometric functions, with frequencies up to a certain cutoff. This approach attenuates undesirable high-frequency features and facilitates retrieving the underlying dynamics. A time-lagged embedding step can be included prior to subspace projection to improve the stability of the results with respect to the parameters involved. Subsequent modal decomposition allows to produce a low-rank description of the system's evolution. Using a synthetic time-evolving model with incomplete and partial observations, we analyze the LPSA results in terms of quality of the retrieved signal, as a function of the parameters involved. We compare the performance of LPSA to that of a range of other sophisticated data analysis techniques. We show that LPSA allows to achieve excellent dynamics reconstruction at modest computational cost. Finally, we demonstrate the superiority of dynamics retrieval by LPSA compared to time binning and merging, which is, to date, the most commonly used method to extract dynamical information from TR-SFX data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
期刊最新文献
Structure and spin of the low- and high-spin states of Fe2+(phen)3 studied by x-ray scattering and emission spectroscopy. Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source. Laue-DIALS: Open-source software for polychromatic x-ray diffraction data. Spatiotemporal determination of photoinduced strain in a Weyl semimetal. High-repetition-rate ultrafast electron diffraction with direct electron detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1