姜黄酚通过抑制EGFR-Akt-Mcl-1信号发挥抗肿瘤作用。

IF 4.8 2区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE American Journal of Chinese Medicine Pub Date : 2023-01-01 DOI:10.1142/S0192415X23500350
Xiao-Ying Li, Feng Gao, Xiao-Cong Wang, Lu-Lu Liu, Yu Gan, Shuang-Ze Han, Li Zhou, Wei Li, Ming Li
{"title":"姜黄酚通过抑制EGFR-Akt-Mcl-1信号发挥抗肿瘤作用。","authors":"Xiao-Ying Li,&nbsp;Feng Gao,&nbsp;Xiao-Cong Wang,&nbsp;Lu-Lu Liu,&nbsp;Yu Gan,&nbsp;Shuang-Ze Han,&nbsp;Li Zhou,&nbsp;Wei Li,&nbsp;Ming Li","doi":"10.1142/S0192415X23500350","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunction of epidermal growth factor receptor (EGFR) signaling plays a critical role in the tumorigenesis of oral squamous cell carcinoma (OSCC). In the present study, the data analysis results of immunohistochemistry and the TCGA database verified that the expression of EGFR is significantly upregulated in OSCC tumor tissues, and depletion of EGFR inhibits the growth of OSCC cells <i>in vitro</i> and <i>in vivo</i>. Moreover, these results showed that the natural compound, curcumol, exhibited a profound antitumor effect on OSCC cells. Western blotting, MTS, and immunofluorescent staining assays indicated that curcumol inhibited cell proliferation and induced intrinsic apoptosis in OSCC cells via downregulating myeloid cell leukemia 1 (Mcl-1). A mechanistic study revealed that curcumol inhibited the EGFR-Akt signal pathway, which activated GSK-3[Formula: see text]-mediated Mcl-1 phosphorylation. Further research showed that curcumol-induced Mcl-1 Ser159 phosphorylation is required to disrupt the interaction between deubiquitinase JOSD1 and Mcl-1 and eventually induce Mcl-1 ubiquitination and degradation. In addition, curcumol administration can effectively inhibit CAL27 and SCC25 xenograft tumor growth and is well-tolerated <i>in vivo</i>. Finally, we demonstrated that Mcl-1 is upregulated and positively correlates with p-EGFR and p-Akt in OSCC tumor tissues. Collectively, the present results provide new insights into the antitumor mechanism of curcumol, identifying it as an attractive therapeutic agent that reduces Mcl-1 expression and inhibits OSCC growth. Targeting EGFR/Akt/Mcl-1 signaling could be a promising option in the clinical treatment of OSCC.</p>","PeriodicalId":50814,"journal":{"name":"American Journal of Chinese Medicine","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Curcumol Exerts Antitumor Effect via Inhibiting EGFR-Akt-Mcl-1 Signaling.\",\"authors\":\"Xiao-Ying Li,&nbsp;Feng Gao,&nbsp;Xiao-Cong Wang,&nbsp;Lu-Lu Liu,&nbsp;Yu Gan,&nbsp;Shuang-Ze Han,&nbsp;Li Zhou,&nbsp;Wei Li,&nbsp;Ming Li\",\"doi\":\"10.1142/S0192415X23500350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysfunction of epidermal growth factor receptor (EGFR) signaling plays a critical role in the tumorigenesis of oral squamous cell carcinoma (OSCC). In the present study, the data analysis results of immunohistochemistry and the TCGA database verified that the expression of EGFR is significantly upregulated in OSCC tumor tissues, and depletion of EGFR inhibits the growth of OSCC cells <i>in vitro</i> and <i>in vivo</i>. Moreover, these results showed that the natural compound, curcumol, exhibited a profound antitumor effect on OSCC cells. Western blotting, MTS, and immunofluorescent staining assays indicated that curcumol inhibited cell proliferation and induced intrinsic apoptosis in OSCC cells via downregulating myeloid cell leukemia 1 (Mcl-1). A mechanistic study revealed that curcumol inhibited the EGFR-Akt signal pathway, which activated GSK-3[Formula: see text]-mediated Mcl-1 phosphorylation. Further research showed that curcumol-induced Mcl-1 Ser159 phosphorylation is required to disrupt the interaction between deubiquitinase JOSD1 and Mcl-1 and eventually induce Mcl-1 ubiquitination and degradation. In addition, curcumol administration can effectively inhibit CAL27 and SCC25 xenograft tumor growth and is well-tolerated <i>in vivo</i>. Finally, we demonstrated that Mcl-1 is upregulated and positively correlates with p-EGFR and p-Akt in OSCC tumor tissues. Collectively, the present results provide new insights into the antitumor mechanism of curcumol, identifying it as an attractive therapeutic agent that reduces Mcl-1 expression and inhibits OSCC growth. Targeting EGFR/Akt/Mcl-1 signaling could be a promising option in the clinical treatment of OSCC.</p>\",\"PeriodicalId\":50814,\"journal\":{\"name\":\"American Journal of Chinese Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X23500350\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S0192415X23500350","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 2

摘要

表皮生长因子受体(EGFR)信号的功能障碍在口腔鳞状细胞癌(OSCC)的发生中起着至关重要的作用。本研究中,免疫组化和TCGA数据库的数据分析结果验证了EGFR在OSCC肿瘤组织中的表达明显上调,EGFR的缺失在体外和体内均抑制了OSCC细胞的生长。此外,这些结果表明,天然化合物姜黄酚对OSCC细胞具有明显的抗肿瘤作用。Western blotting、MTS和免疫荧光染色实验表明,姜黄酚通过下调骨髓细胞白血病1 (Mcl-1)来抑制细胞增殖并诱导细胞内在凋亡。机制研究表明,姜黄酚抑制EGFR-Akt信号通路,激活GSK-3介导的Mcl-1磷酸化。进一步研究表明,姜黄醇诱导的Mcl-1 Ser159磷酸化需要破坏去泛素酶JOSD1与Mcl-1的相互作用,最终诱导Mcl-1泛素化和降解。此外,莪术醇可以有效抑制CAL27和SCC25异种移植肿瘤的生长,并且在体内耐受性良好。最后,我们证明了Mcl-1在OSCC肿瘤组织中上调,并与p-EGFR和p-Akt呈正相关。总的来说,目前的结果为姜黄酚的抗肿瘤机制提供了新的见解,确定它是一种有吸引力的治疗药物,可以降低Mcl-1的表达并抑制OSCC的生长。靶向EGFR/Akt/Mcl-1信号通路可能是临床治疗OSCC的一个有希望的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Curcumol Exerts Antitumor Effect via Inhibiting EGFR-Akt-Mcl-1 Signaling.

Dysfunction of epidermal growth factor receptor (EGFR) signaling plays a critical role in the tumorigenesis of oral squamous cell carcinoma (OSCC). In the present study, the data analysis results of immunohistochemistry and the TCGA database verified that the expression of EGFR is significantly upregulated in OSCC tumor tissues, and depletion of EGFR inhibits the growth of OSCC cells in vitro and in vivo. Moreover, these results showed that the natural compound, curcumol, exhibited a profound antitumor effect on OSCC cells. Western blotting, MTS, and immunofluorescent staining assays indicated that curcumol inhibited cell proliferation and induced intrinsic apoptosis in OSCC cells via downregulating myeloid cell leukemia 1 (Mcl-1). A mechanistic study revealed that curcumol inhibited the EGFR-Akt signal pathway, which activated GSK-3[Formula: see text]-mediated Mcl-1 phosphorylation. Further research showed that curcumol-induced Mcl-1 Ser159 phosphorylation is required to disrupt the interaction between deubiquitinase JOSD1 and Mcl-1 and eventually induce Mcl-1 ubiquitination and degradation. In addition, curcumol administration can effectively inhibit CAL27 and SCC25 xenograft tumor growth and is well-tolerated in vivo. Finally, we demonstrated that Mcl-1 is upregulated and positively correlates with p-EGFR and p-Akt in OSCC tumor tissues. Collectively, the present results provide new insights into the antitumor mechanism of curcumol, identifying it as an attractive therapeutic agent that reduces Mcl-1 expression and inhibits OSCC growth. Targeting EGFR/Akt/Mcl-1 signaling could be a promising option in the clinical treatment of OSCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Chinese Medicine
American Journal of Chinese Medicine 医学-全科医学与补充医学
CiteScore
9.90
自引率
8.80%
发文量
159
审稿时长
4.5 months
期刊介绍: The American Journal of Chinese Medicine, which is defined in its broadest sense possible, publishes original articles and essays relating to traditional or ethnomedicine of all cultures. Areas of particular interest include: Basic scientific and clinical research in indigenous medical techniques, therapeutic procedures, medicinal plants, and traditional medical theories and concepts; Multidisciplinary study of medical practice and health care, especially from historical, cultural, public health, and socioeconomic perspectives; International policy implications of comparative studies of medicine in all cultures, including such issues as health in developing countries, affordability and transferability of health-care techniques and concepts; Translating scholarly ancient texts or modern publications on ethnomedicine. The American Journal of Chinese Medicine will consider for publication a broad range of scholarly contributions, including original scientific research papers, review articles, editorial comments, social policy statements, brief news items, bibliographies, research guides, letters to the editors, book reviews, and selected reprints.
期刊最新文献
Acupuncture and Acupoints for Low Back Pain: Systematic Review and Meta-Analysis. Standardized Extract of Centella asiatica Prevents Fear Memory Deficit in 3xTg-AD Mice. Biometrics Data Visualization of Ginsenosides in Anticancer Investigations. 20(S)-Protopanaxadiol from Panax ginseng Induces Apoptosis and Autophagy in Gastric Cancer Cells by Inhibiting Src. Acupuncture for Fibromyalgia: A Review Based on Multidimensional Evidence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1