{"title":"吗啡重新排列灵长类皮质神经元的染色质空间结构。","authors":"Liang Wang, Xiaojie Wang, Chunqi Liu, Wei Xu, Weihong Kuang, Qian Bu, Hongchun Li, Ying Zhao, Linhong Jiang, Yaxing Chen, Feng Qin, Shu Li, Qinfan Wei, Xiaocong Liu, Bin Liu, Yuanyuan Chen, Yanping Dai, Hongbo Wang, Jingwei Tian, Gang Cao, Yinglan Zhao, Xiaobo Cen","doi":"10.1016/j.gpb.2023.03.003","DOIUrl":null,"url":null,"abstract":"<p><p>The expression of linear DNA sequence is precisely regulated by the three-dimensional (3D) architecture of chromatin. Morphine-induced aberrant gene networks of neurons have been extensively investigated; however, how morphine impacts the 3D genomic architecture of neurons is still unknown. Here, we applied digestion-ligation-only high-throughput chromosome conformation capture (DLO Hi-C) technology to investigate the effects of morphine on the 3D chromatin architecture of primate cortical neurons. After receiving continuous morphine administration for 90 days on rhesus monkeys, we discovered that morphine re-arranged chromosome territories, with a total of 391 segmented compartments being switched. Morphine altered over half of the detected topologically associated domains (TADs), most of which exhibited a variety of shifts, followed by separating and fusing types. Analysis of the looping events at kilobase-scale resolution revealed that morphine increased not only the number but also the length of differential loops. Moreover, all identified differentially expressed genes from the RNA sequencing data were mapped to the specific TAD boundaries or differential loops, and were further validated for changed expression. Collectively, an altered 3D genomic architecture of cortical neurons may regulate the gene networks associated with morphine effects. Our finding provides critical hubs connecting chromosome spatial organization and gene networks associated with the morphine effects in humans.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787020/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morphine Re-arranges Chromatin Spatial Architecture of Primate Cortical Neurons.\",\"authors\":\"Liang Wang, Xiaojie Wang, Chunqi Liu, Wei Xu, Weihong Kuang, Qian Bu, Hongchun Li, Ying Zhao, Linhong Jiang, Yaxing Chen, Feng Qin, Shu Li, Qinfan Wei, Xiaocong Liu, Bin Liu, Yuanyuan Chen, Yanping Dai, Hongbo Wang, Jingwei Tian, Gang Cao, Yinglan Zhao, Xiaobo Cen\",\"doi\":\"10.1016/j.gpb.2023.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The expression of linear DNA sequence is precisely regulated by the three-dimensional (3D) architecture of chromatin. Morphine-induced aberrant gene networks of neurons have been extensively investigated; however, how morphine impacts the 3D genomic architecture of neurons is still unknown. Here, we applied digestion-ligation-only high-throughput chromosome conformation capture (DLO Hi-C) technology to investigate the effects of morphine on the 3D chromatin architecture of primate cortical neurons. After receiving continuous morphine administration for 90 days on rhesus monkeys, we discovered that morphine re-arranged chromosome territories, with a total of 391 segmented compartments being switched. Morphine altered over half of the detected topologically associated domains (TADs), most of which exhibited a variety of shifts, followed by separating and fusing types. Analysis of the looping events at kilobase-scale resolution revealed that morphine increased not only the number but also the length of differential loops. Moreover, all identified differentially expressed genes from the RNA sequencing data were mapped to the specific TAD boundaries or differential loops, and were further validated for changed expression. Collectively, an altered 3D genomic architecture of cortical neurons may regulate the gene networks associated with morphine effects. Our finding provides critical hubs connecting chromosome spatial organization and gene networks associated with the morphine effects in humans.</p>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gpb.2023.03.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gpb.2023.03.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Morphine Re-arranges Chromatin Spatial Architecture of Primate Cortical Neurons.
The expression of linear DNA sequence is precisely regulated by the three-dimensional (3D) architecture of chromatin. Morphine-induced aberrant gene networks of neurons have been extensively investigated; however, how morphine impacts the 3D genomic architecture of neurons is still unknown. Here, we applied digestion-ligation-only high-throughput chromosome conformation capture (DLO Hi-C) technology to investigate the effects of morphine on the 3D chromatin architecture of primate cortical neurons. After receiving continuous morphine administration for 90 days on rhesus monkeys, we discovered that morphine re-arranged chromosome territories, with a total of 391 segmented compartments being switched. Morphine altered over half of the detected topologically associated domains (TADs), most of which exhibited a variety of shifts, followed by separating and fusing types. Analysis of the looping events at kilobase-scale resolution revealed that morphine increased not only the number but also the length of differential loops. Moreover, all identified differentially expressed genes from the RNA sequencing data were mapped to the specific TAD boundaries or differential loops, and were further validated for changed expression. Collectively, an altered 3D genomic architecture of cortical neurons may regulate the gene networks associated with morphine effects. Our finding provides critical hubs connecting chromosome spatial organization and gene networks associated with the morphine effects in humans.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.