JAX-CNV:一种基于全基因组测序的临床级拷贝数检测算法

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY Genomics, Proteomics & Bioinformatics Pub Date : 2022-12-01 DOI:10.1016/j.gpb.2021.06.003
Wan-Ping Lee , Qihui Zhu , Xiaofei Yang , Silvia Liu , Eliza Cerveira , Mallory Ryan , Adam Mil-Homens , Lauren Bellfy , Kai Ye , Charles Lee , Chengsheng Zhang
{"title":"JAX-CNV:一种基于全基因组测序的临床级拷贝数检测算法","authors":"Wan-Ping Lee ,&nbsp;Qihui Zhu ,&nbsp;Xiaofei Yang ,&nbsp;Silvia Liu ,&nbsp;Eliza Cerveira ,&nbsp;Mallory Ryan ,&nbsp;Adam Mil-Homens ,&nbsp;Lauren Bellfy ,&nbsp;Kai Ye ,&nbsp;Charles Lee ,&nbsp;Chengsheng Zhang","doi":"10.1016/j.gpb.2021.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>We aimed to develop a <strong>whole-genome sequencing</strong> (WGS)-based <strong>copy number variant</strong> (CNV) calling algorithm with the potential of replacing <strong>chromosomal microarray assay</strong> (CMA) for clinical diagnosis. <strong>JAX-CNV</strong> is thus developed for CNV detection from WGS data. The performance of this CNV calling algorithm was evaluated in a blinded manner on 31 samples and compared to the 112 CNVs reported by clinically validated CMAs for these 31 samples. The result showed that JAX-CNV recalled 100% of these CNVs. Besides, JAX-CNV identified an average of 30 CNVs per individual, respresenting an approximately seven-fold increase compared to calls of clinically validated CMAs. Experimental validation of 24 randomly selected CNVs showed one false positive, <em>i.e.</em>, a false discovery rate (FDR) of 4.17%. A robustness test on lower-coverage data revealed a 100% sensitivity for CNVs larger than 300 kb (the current threshold for College of American Pathologists) down to 10× coverage. For CNVs larger than 50 kb, sensitivities were 100% for coverages deeper than 20×, 97% for 15×, and 95% for 10×. We developed a WGS-based CNV pipeline, including this newly developed CNV caller JAX-CNV, and found it capable of detecting CMA-reported CNVs at a sensitivity of 100% with about a FDR of 4%. We propose that JAX-CNV could be further examined in a multi-institutional study to justify the transition of first-tier <strong>genetic testing</strong> from CMAs to WGS. JAX-CNV is available at <span>https://github.com/TheJacksonLaboratory/JAX-CNV</span><svg><path></path></svg>.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"20 6","pages":"Pages 1197-1206"},"PeriodicalIF":11.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225484/pdf/","citationCount":"0","resultStr":"{\"title\":\"JAX-CNV: A Whole-genome Sequencing-based Algorithm for Copy Number Detection at Clinical Grade Level\",\"authors\":\"Wan-Ping Lee ,&nbsp;Qihui Zhu ,&nbsp;Xiaofei Yang ,&nbsp;Silvia Liu ,&nbsp;Eliza Cerveira ,&nbsp;Mallory Ryan ,&nbsp;Adam Mil-Homens ,&nbsp;Lauren Bellfy ,&nbsp;Kai Ye ,&nbsp;Charles Lee ,&nbsp;Chengsheng Zhang\",\"doi\":\"10.1016/j.gpb.2021.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We aimed to develop a <strong>whole-genome sequencing</strong> (WGS)-based <strong>copy number variant</strong> (CNV) calling algorithm with the potential of replacing <strong>chromosomal microarray assay</strong> (CMA) for clinical diagnosis. <strong>JAX-CNV</strong> is thus developed for CNV detection from WGS data. The performance of this CNV calling algorithm was evaluated in a blinded manner on 31 samples and compared to the 112 CNVs reported by clinically validated CMAs for these 31 samples. The result showed that JAX-CNV recalled 100% of these CNVs. Besides, JAX-CNV identified an average of 30 CNVs per individual, respresenting an approximately seven-fold increase compared to calls of clinically validated CMAs. Experimental validation of 24 randomly selected CNVs showed one false positive, <em>i.e.</em>, a false discovery rate (FDR) of 4.17%. A robustness test on lower-coverage data revealed a 100% sensitivity for CNVs larger than 300 kb (the current threshold for College of American Pathologists) down to 10× coverage. For CNVs larger than 50 kb, sensitivities were 100% for coverages deeper than 20×, 97% for 15×, and 95% for 10×. We developed a WGS-based CNV pipeline, including this newly developed CNV caller JAX-CNV, and found it capable of detecting CMA-reported CNVs at a sensitivity of 100% with about a FDR of 4%. We propose that JAX-CNV could be further examined in a multi-institutional study to justify the transition of first-tier <strong>genetic testing</strong> from CMAs to WGS. JAX-CNV is available at <span>https://github.com/TheJacksonLaboratory/JAX-CNV</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"20 6\",\"pages\":\"Pages 1197-1206\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672022922000055\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022922000055","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

我们旨在开发一种基于全基因组测序(WGS)的拷贝数变异(CNV)调用算法,该算法有可能取代染色体微阵列检测(CMA)用于临床诊断。JAX-CNV因此被开发用于从WGS数据中检测CNV。该CNV调用算法的性能在31个样本上进行盲法评估,并与临床验证的cma对这31个样本报告的112个CNV进行比较。结果表明,JAX-CNV 100%召回了这些cnv。此外,JAX-CNV平均鉴定出每个个体30个cnv,与临床验证的cma相比,增加了约7倍。对随机选取的24个CNVs进行实验验证,结果显示1个假阳性,即错误发现率(FDR)为4.17%。对低覆盖率数据的稳健性测试显示,对于CNVs大于300 kb(目前美国病理学家学会的阈值)的100%敏感性降低到10倍覆盖率。对于大于50 kb的CNVs,覆盖度大于20×的灵敏度为100%,大于15×的灵敏度为97%,大于10×的灵敏度为95%。我们开发了一个基于wgs的CNV管道,包括这个新开发的CNV调用者JAX-CNV,并发现它能够以100%的灵敏度检测cma报告的CNV, FDR约为4%。我们建议JAX-CNV可以在一个多机构的研究中进一步研究,以证明从CMAs到WGS的一级基因检测的转变。JAX-CNV可从https://github.com/TheJacksonLaboratory/JAX-CNV获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JAX-CNV: A Whole-genome Sequencing-based Algorithm for Copy Number Detection at Clinical Grade Level

We aimed to develop a whole-genome sequencing (WGS)-based copy number variant (CNV) calling algorithm with the potential of replacing chromosomal microarray assay (CMA) for clinical diagnosis. JAX-CNV is thus developed for CNV detection from WGS data. The performance of this CNV calling algorithm was evaluated in a blinded manner on 31 samples and compared to the 112 CNVs reported by clinically validated CMAs for these 31 samples. The result showed that JAX-CNV recalled 100% of these CNVs. Besides, JAX-CNV identified an average of 30 CNVs per individual, respresenting an approximately seven-fold increase compared to calls of clinically validated CMAs. Experimental validation of 24 randomly selected CNVs showed one false positive, i.e., a false discovery rate (FDR) of 4.17%. A robustness test on lower-coverage data revealed a 100% sensitivity for CNVs larger than 300 kb (the current threshold for College of American Pathologists) down to 10× coverage. For CNVs larger than 50 kb, sensitivities were 100% for coverages deeper than 20×, 97% for 15×, and 95% for 10×. We developed a WGS-based CNV pipeline, including this newly developed CNV caller JAX-CNV, and found it capable of detecting CMA-reported CNVs at a sensitivity of 100% with about a FDR of 4%. We propose that JAX-CNV could be further examined in a multi-institutional study to justify the transition of first-tier genetic testing from CMAs to WGS. JAX-CNV is available at https://github.com/TheJacksonLaboratory/JAX-CNV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
期刊最新文献
Review and Evaluate the Bioinformatics Analysis Strategies of ATAC-seq and CUT&Tag Data. Identification of highly repetitive barley enhancers with long-range regulation potential via STARR-seq CpG island definition and methylation mapping of the T2T-YAO genome Pindel-TD: a tandem duplication detector based on a pattern growth approach SMARTdb: An Integrated Database for Exploring Single-cell Multi-omics Data of Reproductive Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1