{"title":"在IRT中对过分散、欠分散和等分散计数数据建模的一种灵活方法:双参数康威-麦克斯韦-泊松模型","authors":"Marie Beisemann","doi":"10.1111/bmsp.12273","DOIUrl":null,"url":null,"abstract":"<p>Several psychometric tests and self-reports generate count data (<i>e.g.</i>, divergent thinking tasks). The most prominent count data item response theory model, the Rasch Poisson Counts Model (RPCM), is limited in applicability by two restrictive assumptions: equal item discriminations and equidispersion (conditional mean equal to conditional variance). Violations of these assumptions lead to impaired reliability and standard error estimates. Previous work generalized the RPCM but maintained some limitations. The two-parameter Poisson counts model allows for varying discriminations but retains the equidispersion assumption. The Conway–Maxwell–Poisson Counts Model allows for modelling over- and underdispersion (conditional mean less than and greater than conditional variance, respectively) but still assumes constant discriminations. The present work introduces the Two-Parameter Conway–Maxwell–Poisson (2PCMP) model which generalizes these three models to allow for varying discriminations and dispersions within one model, helping to better accommodate data from count data tests and self-reports. A marginal maximum likelihood method based on the EM algorithm is derived. An implementation of the 2PCMP model in R and C++ is provided. Two simulation studies examine the model's statistical properties and compare the 2PCMP model to established models. Data from divergent thinking tasks are reanalysed with the 2PCMP model to illustrate the model's flexibility and ability to test assumptions of special cases.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"75 3","pages":"411-443"},"PeriodicalIF":1.5000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bpspsychub.onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12273","citationCount":"4","resultStr":"{\"title\":\"A flexible approach to modelling over-, under- and equidispersed count data in IRT: The Two-Parameter Conway–Maxwell–Poisson Model\",\"authors\":\"Marie Beisemann\",\"doi\":\"10.1111/bmsp.12273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several psychometric tests and self-reports generate count data (<i>e.g.</i>, divergent thinking tasks). The most prominent count data item response theory model, the Rasch Poisson Counts Model (RPCM), is limited in applicability by two restrictive assumptions: equal item discriminations and equidispersion (conditional mean equal to conditional variance). Violations of these assumptions lead to impaired reliability and standard error estimates. Previous work generalized the RPCM but maintained some limitations. The two-parameter Poisson counts model allows for varying discriminations but retains the equidispersion assumption. The Conway–Maxwell–Poisson Counts Model allows for modelling over- and underdispersion (conditional mean less than and greater than conditional variance, respectively) but still assumes constant discriminations. The present work introduces the Two-Parameter Conway–Maxwell–Poisson (2PCMP) model which generalizes these three models to allow for varying discriminations and dispersions within one model, helping to better accommodate data from count data tests and self-reports. A marginal maximum likelihood method based on the EM algorithm is derived. An implementation of the 2PCMP model in R and C++ is provided. Two simulation studies examine the model's statistical properties and compare the 2PCMP model to established models. Data from divergent thinking tasks are reanalysed with the 2PCMP model to illustrate the model's flexibility and ability to test assumptions of special cases.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"75 3\",\"pages\":\"411-443\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bpspsychub.onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12273\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12273\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12273","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A flexible approach to modelling over-, under- and equidispersed count data in IRT: The Two-Parameter Conway–Maxwell–Poisson Model
Several psychometric tests and self-reports generate count data (e.g., divergent thinking tasks). The most prominent count data item response theory model, the Rasch Poisson Counts Model (RPCM), is limited in applicability by two restrictive assumptions: equal item discriminations and equidispersion (conditional mean equal to conditional variance). Violations of these assumptions lead to impaired reliability and standard error estimates. Previous work generalized the RPCM but maintained some limitations. The two-parameter Poisson counts model allows for varying discriminations but retains the equidispersion assumption. The Conway–Maxwell–Poisson Counts Model allows for modelling over- and underdispersion (conditional mean less than and greater than conditional variance, respectively) but still assumes constant discriminations. The present work introduces the Two-Parameter Conway–Maxwell–Poisson (2PCMP) model which generalizes these three models to allow for varying discriminations and dispersions within one model, helping to better accommodate data from count data tests and self-reports. A marginal maximum likelihood method based on the EM algorithm is derived. An implementation of the 2PCMP model in R and C++ is provided. Two simulation studies examine the model's statistical properties and compare the 2PCMP model to established models. Data from divergent thinking tasks are reanalysed with the 2PCMP model to illustrate the model's flexibility and ability to test assumptions of special cases.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.