氘溶剂动力学同位素对邻苯二酚甲基转移酶催化甲基转移的影响。

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein and Peptide Letters Pub Date : 2023-01-01 DOI:10.2174/0929866530666230228100703
Zhao Zipeng, Li Fangya, Zhang Jianyu
{"title":"氘溶剂动力学同位素对邻苯二酚甲基转移酶催化甲基转移的影响。","authors":"Zhao Zipeng,&nbsp;Li Fangya,&nbsp;Zhang Jianyu","doi":"10.2174/0929866530666230228100703","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Catechol o-methyltransferase plays a key role in the metabolism of catecholamine neurotransmitters. At present, its catalytic mechanism, overall structure, and kinetic characteristics have been basically clarified, but few people have paid attention to the function of solvents on enzymatic methyl transfer reactions. The influence of solvents on enzymatic reactions has always been a fuzzy hot topic. In addition, as a well-studied typical methyltransferase, COMT is a good test bed for exploring the source of the solvent isotope effect, which is a powerful tool in enzymatic mechanism research.</p><p><strong>Methods: </strong>We have measured the kinetic parameters of methyl transfer catalyzed by COMT in both normal water (H<sub>2</sub>O) and heavy water (D<sub>2</sub>O) by high-performance liquid chromatography (HPLC) in the range of pL 6 ~ 11.</p><p><strong>Results: </strong>The kinetic characteristics of COMT in H<sub>2</sub>O and D<sub>2</sub>O were significantly different under different pH/pD conditions. Significant solvent kinetic isotope effects (SKIE) were obtained, especially inverse solvent kinetic isotope effects (SKIE < 1) were observed in this methyl transfer reaction for the first time.</p><p><strong>Conclusion: </strong>Traditional factors which could interpret the solvent isotope effect were ruled out. It's suggested that the solvent might affect the overall conformation as well as the flexibility of protein through non-covalent forces, thus altering the catalytic activity of COMT and leading to the solvent isotope effect.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deuterium Solvent Kinetic Isotope Effect on Enzymatic Methyl Transfer Catalyzed by Catechol O-methyltransferase.\",\"authors\":\"Zhao Zipeng,&nbsp;Li Fangya,&nbsp;Zhang Jianyu\",\"doi\":\"10.2174/0929866530666230228100703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Catechol o-methyltransferase plays a key role in the metabolism of catecholamine neurotransmitters. At present, its catalytic mechanism, overall structure, and kinetic characteristics have been basically clarified, but few people have paid attention to the function of solvents on enzymatic methyl transfer reactions. The influence of solvents on enzymatic reactions has always been a fuzzy hot topic. In addition, as a well-studied typical methyltransferase, COMT is a good test bed for exploring the source of the solvent isotope effect, which is a powerful tool in enzymatic mechanism research.</p><p><strong>Methods: </strong>We have measured the kinetic parameters of methyl transfer catalyzed by COMT in both normal water (H<sub>2</sub>O) and heavy water (D<sub>2</sub>O) by high-performance liquid chromatography (HPLC) in the range of pL 6 ~ 11.</p><p><strong>Results: </strong>The kinetic characteristics of COMT in H<sub>2</sub>O and D<sub>2</sub>O were significantly different under different pH/pD conditions. Significant solvent kinetic isotope effects (SKIE) were obtained, especially inverse solvent kinetic isotope effects (SKIE < 1) were observed in this methyl transfer reaction for the first time.</p><p><strong>Conclusion: </strong>Traditional factors which could interpret the solvent isotope effect were ruled out. It's suggested that the solvent might affect the overall conformation as well as the flexibility of protein through non-covalent forces, thus altering the catalytic activity of COMT and leading to the solvent isotope effect.</p>\",\"PeriodicalId\":20736,\"journal\":{\"name\":\"Protein and Peptide Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein and Peptide Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0929866530666230228100703\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0929866530666230228100703","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

儿茶酚o-甲基转移酶在儿茶酚胺类神经递质代谢中起关键作用。目前,其催化机理、总体结构、动力学特性等方面已基本阐明,但溶剂在酶促甲基转移反应中的作用却很少有人关注。溶剂对酶促反应的影响一直是一个模糊的热点问题。此外,COMT作为一种被充分研究的典型甲基转移酶,是探索溶剂同位素效应来源的良好实验平台,是酶机制研究的有力工具。方法:采用高效液相色谱法(HPLC)测定了COMT在正常水(H2O)和重水(D2O)中催化甲基转移的动力学参数,范围为pL 6 ~ 11。结果:不同pH/pD条件下COMT在H2O和D2O中的动力学特性有显著差异。得到了显著的溶剂动力学同位素效应(SKIE),特别是首次在甲基转移反应中观察到反溶剂动力学同位素效应(SKIE < 1)。结论:排除了解释溶剂同位素效应的传统因素。提示溶剂可能通过非共价力影响蛋白质的整体构象和柔韧性,从而改变COMT的催化活性,导致溶剂同位素效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deuterium Solvent Kinetic Isotope Effect on Enzymatic Methyl Transfer Catalyzed by Catechol O-methyltransferase.

Introduction: Catechol o-methyltransferase plays a key role in the metabolism of catecholamine neurotransmitters. At present, its catalytic mechanism, overall structure, and kinetic characteristics have been basically clarified, but few people have paid attention to the function of solvents on enzymatic methyl transfer reactions. The influence of solvents on enzymatic reactions has always been a fuzzy hot topic. In addition, as a well-studied typical methyltransferase, COMT is a good test bed for exploring the source of the solvent isotope effect, which is a powerful tool in enzymatic mechanism research.

Methods: We have measured the kinetic parameters of methyl transfer catalyzed by COMT in both normal water (H2O) and heavy water (D2O) by high-performance liquid chromatography (HPLC) in the range of pL 6 ~ 11.

Results: The kinetic characteristics of COMT in H2O and D2O were significantly different under different pH/pD conditions. Significant solvent kinetic isotope effects (SKIE) were obtained, especially inverse solvent kinetic isotope effects (SKIE < 1) were observed in this methyl transfer reaction for the first time.

Conclusion: Traditional factors which could interpret the solvent isotope effect were ruled out. It's suggested that the solvent might affect the overall conformation as well as the flexibility of protein through non-covalent forces, thus altering the catalytic activity of COMT and leading to the solvent isotope effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein and Peptide Letters
Protein and Peptide Letters 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
98
审稿时长
2 months
期刊介绍: Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations. Protein & Peptide Letters focuses on: Structure Studies Advances in Recombinant Expression Drug Design Chemical Synthesis Function Pharmacology Enzymology Conformational Analysis Immunology Biotechnology Protein Engineering Protein Folding Sequencing Molecular Recognition Purification and Analysis
期刊最新文献
Insights into the Evolutionary Dynamics: Characterization of Disintegrin and Metalloproteinase Proteins in the Venom Gland Transcriptome of the Hemiscorpius lepturus Scorpion. Investigation of the Expression and Regulation of SCG5 in the Context of the Chromogranin-Secretogranin Family in Malignant Tumors. Macromolecular Polymer Based Complexes: A Diverse Strategy for the Delivery of Nucleotides. Expression, Purification, and Evaluation of Antibody Responses and Antibody-Immunogen Complex Simulation of a Designed Multi-Epitope Vaccine against SARS-COV-2. Different VH3-Binding Protein A Resins Show Comparable VH3-Binding Mediated By product Separation Capabilities Despite Having Varied Dynamic Binding Capacities Towards A VH3 Fab.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1