基于脑电信号的情绪特征提取与分类研究进展

Jiang Wang, Mei Wang
{"title":"基于脑电信号的情绪特征提取与分类研究进展","authors":"Jiang Wang,&nbsp;Mei Wang","doi":"10.1016/j.cogr.2021.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>As a subjectively psychological and physiological response to external stimuli, emotion is ubiquitous in our daily life. With the continuous development of the artificial intelligence and brain science, emotion recognition rapidly becomes a multiple discipline research field through EEG signals. This paper investigates the relevantly scientific literature in the past five years and reviews the emotional feature extraction methods and the classification methods using EEG signals. Commonly used feature extraction analysis methods include time domain analysis, frequency domain analysis, and time-frequency domain analysis. The widely used classification methods include machine learning algorithms based on Support Vector Machine (SVM), k-Nearest Neighbor (KNN), Naive Bayes (NB), etc., and their classification accuracy ranges from 57.50% to 95.70%. The classification accuracy of the deep learning algorithms based on Neural Network (NN), Long and Short-Term Memory (LSTM), and Deep Belief Network (DBN) ranges from 63.38% to 97.56%.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"1 ","pages":"Pages 29-40"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cogr.2021.04.001","citationCount":"48","resultStr":"{\"title\":\"Review of the emotional feature extraction and classification using EEG signals\",\"authors\":\"Jiang Wang,&nbsp;Mei Wang\",\"doi\":\"10.1016/j.cogr.2021.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a subjectively psychological and physiological response to external stimuli, emotion is ubiquitous in our daily life. With the continuous development of the artificial intelligence and brain science, emotion recognition rapidly becomes a multiple discipline research field through EEG signals. This paper investigates the relevantly scientific literature in the past five years and reviews the emotional feature extraction methods and the classification methods using EEG signals. Commonly used feature extraction analysis methods include time domain analysis, frequency domain analysis, and time-frequency domain analysis. The widely used classification methods include machine learning algorithms based on Support Vector Machine (SVM), k-Nearest Neighbor (KNN), Naive Bayes (NB), etc., and their classification accuracy ranges from 57.50% to 95.70%. The classification accuracy of the deep learning algorithms based on Neural Network (NN), Long and Short-Term Memory (LSTM), and Deep Belief Network (DBN) ranges from 63.38% to 97.56%.</p></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"1 \",\"pages\":\"Pages 29-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cogr.2021.04.001\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241321000033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241321000033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

情绪作为对外界刺激的主观心理和生理反应,在我们的日常生活中无处不在。随着人工智能和脑科学的不断发展,通过脑电图信号进行情绪识别迅速成为一个多学科的研究领域。本文对近五年来的相关科学文献进行了梳理,对基于脑电信号的情感特征提取方法和分类方法进行了综述。常用的特征提取分析方法有时域分析、频域分析和时频域分析。目前广泛使用的分类方法有基于支持向量机(SVM)、k近邻(KNN)、朴素贝叶斯(NB)等机器学习算法,其分类准确率在57.50% ~ 95.70%之间。基于神经网络(NN)、长短期记忆(LSTM)和深度信念网络(DBN)的深度学习算法的分类准确率在63.38% ~ 97.56%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of the emotional feature extraction and classification using EEG signals

As a subjectively psychological and physiological response to external stimuli, emotion is ubiquitous in our daily life. With the continuous development of the artificial intelligence and brain science, emotion recognition rapidly becomes a multiple discipline research field through EEG signals. This paper investigates the relevantly scientific literature in the past five years and reviews the emotional feature extraction methods and the classification methods using EEG signals. Commonly used feature extraction analysis methods include time domain analysis, frequency domain analysis, and time-frequency domain analysis. The widely used classification methods include machine learning algorithms based on Support Vector Machine (SVM), k-Nearest Neighbor (KNN), Naive Bayes (NB), etc., and their classification accuracy ranges from 57.50% to 95.70%. The classification accuracy of the deep learning algorithms based on Neural Network (NN), Long and Short-Term Memory (LSTM), and Deep Belief Network (DBN) ranges from 63.38% to 97.56%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
期刊最新文献
Optimizing Food Sample Handling and Placement Pattern Recognition with YOLO: Advanced Techniques in Robotic Object Detection Intelligent path planning for cognitive mobile robot based on Dhouib-Matrix-SPP method YOLOT: Multi-scale and diverse tire sidewall text region detection based on You-Only-Look-Once(YOLOv5) Scalable and cohesive swarm control based on reinforcement learning POMDP-based probabilistic decision making for path planning in wheeled mobile robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1