发育性阅读障碍患者听觉感知的解剖学和行为学相关性。

Ting Qi, Maria Luisa Mandelli, Christa L Watson Pereira, Emma Wellman, Rian Bogley, Abigail E Licata, Edward F Chang, Yulia Oganian, Maria Luisa Gorno-Tempini
{"title":"发育性阅读障碍患者听觉感知的解剖学和行为学相关性。","authors":"Ting Qi, Maria Luisa Mandelli, Christa L Watson Pereira, Emma Wellman, Rian Bogley, Abigail E Licata, Edward F Chang, Yulia Oganian, Maria Luisa Gorno-Tempini","doi":"10.1101/2023.05.09.539936","DOIUrl":null,"url":null,"abstract":"<p><p>Developmental dyslexia is typically associated with difficulties in basic auditory processing and in manipulating speech sounds. However, the neuroanatomical correlates of auditory difficulties in developmental dyslexia (DD) and their contribution to individual clinical phenotypes are still unknown. Recent intracranial electrocorticography findings associated processing of sound amplitude rises and speech sounds with posterior and middle superior temporal gyrus (STG), respectively. We hypothesize that regional STG anatomy will relate to specific auditory abilities in DD, and that auditory processing abilities will relate to behavioral difficulties with speech and reading. One hundred and ten children (78 DD, 32 typically developing, age 7-15 years) completed amplitude rise time and speech in noise discrimination tasks. They also underwent a battery of cognitive tests. Anatomical MRI scans were used to identify regions in which local cortical gyrification complexity correlated with auditory behavior. Behaviorally, amplitude rise time but not speech in noise performance was impaired in DD. Neurally, amplitude rise time and speech in noise performance correlated with gyrification in posterior and middle STG, respectively. Furthermore, amplitude rise time significantly contributed to reading impairments in DD, while speech in noise only explained variance in phonological awareness. Finally, amplitude rise time and speech in noise performance were not correlated, and each task was correlated with distinct neuropsychological measures, emphasizing their unique contributions to DD. Overall, we provide a direct link between the neurodevelopment of the left STG and individual variability in auditory processing abilities in neurotypical and dyslexic populations.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/70/23/nihpp-2023.05.09.539936v1.PMC10197694.pdf","citationCount":"0","resultStr":"{\"title\":\"Anatomical and behavioral correlates of auditory perception in developmental dyslexia.\",\"authors\":\"Ting Qi, Maria Luisa Mandelli, Christa L Watson Pereira, Emma Wellman, Rian Bogley, Abigail E Licata, Edward F Chang, Yulia Oganian, Maria Luisa Gorno-Tempini\",\"doi\":\"10.1101/2023.05.09.539936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developmental dyslexia is typically associated with difficulties in basic auditory processing and in manipulating speech sounds. However, the neuroanatomical correlates of auditory difficulties in developmental dyslexia (DD) and their contribution to individual clinical phenotypes are still unknown. Recent intracranial electrocorticography findings associated processing of sound amplitude rises and speech sounds with posterior and middle superior temporal gyrus (STG), respectively. We hypothesize that regional STG anatomy will relate to specific auditory abilities in DD, and that auditory processing abilities will relate to behavioral difficulties with speech and reading. One hundred and ten children (78 DD, 32 typically developing, age 7-15 years) completed amplitude rise time and speech in noise discrimination tasks. They also underwent a battery of cognitive tests. Anatomical MRI scans were used to identify regions in which local cortical gyrification complexity correlated with auditory behavior. Behaviorally, amplitude rise time but not speech in noise performance was impaired in DD. Neurally, amplitude rise time and speech in noise performance correlated with gyrification in posterior and middle STG, respectively. Furthermore, amplitude rise time significantly contributed to reading impairments in DD, while speech in noise only explained variance in phonological awareness. Finally, amplitude rise time and speech in noise performance were not correlated, and each task was correlated with distinct neuropsychological measures, emphasizing their unique contributions to DD. Overall, we provide a direct link between the neurodevelopment of the left STG and individual variability in auditory processing abilities in neurotypical and dyslexic populations.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/70/23/nihpp-2023.05.09.539936v1.PMC10197694.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.05.09.539936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.05.09.539936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发展性阅读障碍(DD)通常与操纵语音的困难有关,有时与基本听觉处理的困难有关。然而,DD听觉困难的神经解剖学相关性及其对个体临床表型的贡献仍然未知。最近的颅内皮层电描记术(ECoG)发现,波幅升高和语音处理分别与颞后上回和颞中上回(STG)有关。我们假设局部STG解剖将与DD的特定听觉能力有关,听觉处理能力将与行为困难有关。110名儿童(78名DD,32名发育中的儿童,年龄7-15岁)完成了振幅上升时间(ART)和噪声辨别中的言语(SiN)任务。他们还接受了一系列认知测试。解剖MRI扫描用于识别DD中局部皮层回转复杂性与听觉任务相关的区域。DD中行为、ART而非SiN表现受损。神经、ART和SiN表现分别与STG后部和STG中部的回转相关。此外,ART对DD的阅读障碍有显著影响,而SiN仅解释了语音意识的差异。最后,ART和SiN表现不相关,每项任务都与不同的神经心理学指标相关,因此可以确定不同的DD亚组。总的来说,我们提供了左STG的神经发育与DD听觉处理能力的个体变异性之间的直接联系。言语和非言语缺陷之间的分离支持不同的DD表型,并暗示了不同的干预方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anatomical and behavioral correlates of auditory perception in developmental dyslexia.

Developmental dyslexia is typically associated with difficulties in basic auditory processing and in manipulating speech sounds. However, the neuroanatomical correlates of auditory difficulties in developmental dyslexia (DD) and their contribution to individual clinical phenotypes are still unknown. Recent intracranial electrocorticography findings associated processing of sound amplitude rises and speech sounds with posterior and middle superior temporal gyrus (STG), respectively. We hypothesize that regional STG anatomy will relate to specific auditory abilities in DD, and that auditory processing abilities will relate to behavioral difficulties with speech and reading. One hundred and ten children (78 DD, 32 typically developing, age 7-15 years) completed amplitude rise time and speech in noise discrimination tasks. They also underwent a battery of cognitive tests. Anatomical MRI scans were used to identify regions in which local cortical gyrification complexity correlated with auditory behavior. Behaviorally, amplitude rise time but not speech in noise performance was impaired in DD. Neurally, amplitude rise time and speech in noise performance correlated with gyrification in posterior and middle STG, respectively. Furthermore, amplitude rise time significantly contributed to reading impairments in DD, while speech in noise only explained variance in phonological awareness. Finally, amplitude rise time and speech in noise performance were not correlated, and each task was correlated with distinct neuropsychological measures, emphasizing their unique contributions to DD. Overall, we provide a direct link between the neurodevelopment of the left STG and individual variability in auditory processing abilities in neurotypical and dyslexic populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovery of a multipotent cell type from the term human placenta. Phenotypic complexities of rare heterozygous neurexin-1 deletions. Regulation of NRF2 by Phosphoinositides and Small Heat Shock Proteins. Mediator Subunit Med4 Enforces Metastatic Dormancy in Breast Cancer. Entropy Changes in Water Networks Promote Protein Denaturation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1