Peng Zhang, Fan Lin, Fei Ma, Yuting Chen, Siyi Fang, Haiyan Zheng, Zuwen Xiang, Xiaoyun Yang, Qiang Li
{"title":"利用深度学习从24小时动态心电图记录中自动筛选房颤患者。","authors":"Peng Zhang, Fan Lin, Fei Ma, Yuting Chen, Siyi Fang, Haiyan Zheng, Zuwen Xiang, Xiaoyun Yang, Qiang Li","doi":"10.1093/ehjdh/ztad018","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>As the demand for atrial fibrillation (AF) screening increases, clinicians spend a significant amount of time identifying AF signals from massive amounts of data obtained during long-term dynamic electrocardiogram (ECG) monitoring. The identification of AF signals is subjective and depends on the experience of clinicians. However, experienced cardiologists are scarce. This study aimed to apply a deep learning-based algorithm to fully automate primary screening of patients with AF using 24-h Holter monitoring.</p><p><strong>Methods and results: </strong>A deep learning model was developed to automatically detect AF episodes using RR intervals and was trained and evaluated on 23 621 (2297 AF and 21 324 non-AF) 24-h Holter recordings from 23 452 patients. Based on the AF episode detection results, patients with AF were automatically identified using the criterion of at least one AF episode lasting 6 min or longer. Performance was assessed on an independent real-world hospital-scenario test set (19 227 recordings) and a community-scenario test set (1299 recordings). For the two test sets, the model obtained high performance for the identification of patients with AF (sensitivity: 0.995 and 1.000; specificity: 0.985 and 0.997, respectively). Moreover, it obtained good and consistent performance (sensitivity: 1.000; specificity: 0.972) for an external public data set.</p><p><strong>Conclusion: </strong>Using the criterion of at least one AF episode of 6 min or longer, the deep learning model can fully automatically screen patients for AF with high accuracy from long-term Holter monitoring data. This method may serve as a powerful and cost-effective tool for primary screening for AF.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/42/c9/ztad018.PMC10232289.pdf","citationCount":"1","resultStr":"{\"title\":\"Automatic screening of patients with atrial fibrillation from 24-h Holter recording using deep learning.\",\"authors\":\"Peng Zhang, Fan Lin, Fei Ma, Yuting Chen, Siyi Fang, Haiyan Zheng, Zuwen Xiang, Xiaoyun Yang, Qiang Li\",\"doi\":\"10.1093/ehjdh/ztad018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>As the demand for atrial fibrillation (AF) screening increases, clinicians spend a significant amount of time identifying AF signals from massive amounts of data obtained during long-term dynamic electrocardiogram (ECG) monitoring. The identification of AF signals is subjective and depends on the experience of clinicians. However, experienced cardiologists are scarce. This study aimed to apply a deep learning-based algorithm to fully automate primary screening of patients with AF using 24-h Holter monitoring.</p><p><strong>Methods and results: </strong>A deep learning model was developed to automatically detect AF episodes using RR intervals and was trained and evaluated on 23 621 (2297 AF and 21 324 non-AF) 24-h Holter recordings from 23 452 patients. Based on the AF episode detection results, patients with AF were automatically identified using the criterion of at least one AF episode lasting 6 min or longer. Performance was assessed on an independent real-world hospital-scenario test set (19 227 recordings) and a community-scenario test set (1299 recordings). For the two test sets, the model obtained high performance for the identification of patients with AF (sensitivity: 0.995 and 1.000; specificity: 0.985 and 0.997, respectively). Moreover, it obtained good and consistent performance (sensitivity: 1.000; specificity: 0.972) for an external public data set.</p><p><strong>Conclusion: </strong>Using the criterion of at least one AF episode of 6 min or longer, the deep learning model can fully automatically screen patients for AF with high accuracy from long-term Holter monitoring data. This method may serve as a powerful and cost-effective tool for primary screening for AF.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/42/c9/ztad018.PMC10232289.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztad018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Automatic screening of patients with atrial fibrillation from 24-h Holter recording using deep learning.
Aims: As the demand for atrial fibrillation (AF) screening increases, clinicians spend a significant amount of time identifying AF signals from massive amounts of data obtained during long-term dynamic electrocardiogram (ECG) monitoring. The identification of AF signals is subjective and depends on the experience of clinicians. However, experienced cardiologists are scarce. This study aimed to apply a deep learning-based algorithm to fully automate primary screening of patients with AF using 24-h Holter monitoring.
Methods and results: A deep learning model was developed to automatically detect AF episodes using RR intervals and was trained and evaluated on 23 621 (2297 AF and 21 324 non-AF) 24-h Holter recordings from 23 452 patients. Based on the AF episode detection results, patients with AF were automatically identified using the criterion of at least one AF episode lasting 6 min or longer. Performance was assessed on an independent real-world hospital-scenario test set (19 227 recordings) and a community-scenario test set (1299 recordings). For the two test sets, the model obtained high performance for the identification of patients with AF (sensitivity: 0.995 and 1.000; specificity: 0.985 and 0.997, respectively). Moreover, it obtained good and consistent performance (sensitivity: 1.000; specificity: 0.972) for an external public data set.
Conclusion: Using the criterion of at least one AF episode of 6 min or longer, the deep learning model can fully automatically screen patients for AF with high accuracy from long-term Holter monitoring data. This method may serve as a powerful and cost-effective tool for primary screening for AF.