时间分辨串行飞秒晶体学数据的低通光谱分析。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL Structural Dynamics-Us Pub Date : 2023-05-26 eCollection Date: 2023-05-01 DOI:10.1063/4.0000178
Cecilia M Casadei, Ahmad Hosseinizadeh, Spencer Bliven, Tobias Weinert, Jörg Standfuss, Russell Fung, Gebhard F X Schertler, Robin Santra
{"title":"时间分辨串行飞秒晶体学数据的低通光谱分析。","authors":"Cecilia M Casadei, Ahmad Hosseinizadeh, Spencer Bliven, Tobias Weinert, Jörg Standfuss, Russell Fung, Gebhard F X Schertler, Robin Santra","doi":"10.1063/4.0000178","DOIUrl":null,"url":null,"abstract":"<p><p>Low-pass spectral analysis (LPSA) is a recently developed dynamics retrieval algorithm showing excellent retrieval properties when applied to model data affected by extreme incompleteness and stochastic weighting. In this work, we apply LPSA to an experimental time-resolved serial femtosecond crystallography (TR-SFX) dataset from the membrane protein bacteriorhodopsin (bR) and analyze its parametric sensitivity. While most dynamical modes are contaminated by nonphysical high-frequency features, we identify two dominant modes, which are little affected by spurious frequencies. The dynamics retrieved using these modes shows an isomerization signal compatible with previous findings. We employ synthetic data with increasing timing uncertainty, increasing incompleteness level, pixel-dependent incompleteness, and photon counting errors to investigate the root cause of the high-frequency contamination of our TR-SFX modes. By testing a range of methods, we show that timing errors comparable to the dynamical periods to be retrieved produce a smearing of dynamical features, hampering dynamics retrieval, but with no introduction of spurious components in the solution, when convergence criteria are met. Using model data, we are able to attribute the high-frequency contamination of low-order dynamical modes to the high levels of noise present in the data. Finally, we propose a method to handle missing observations that produces a substantial dynamics retrieval improvement from synthetic data with a significant static component. Reprocessing of the bR TR-SFX data using the improved method yields dynamical movies with strong isomerization signals compatible with previous findings.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233406/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-pass spectral analysis of time-resolved serial femtosecond crystallography data.\",\"authors\":\"Cecilia M Casadei, Ahmad Hosseinizadeh, Spencer Bliven, Tobias Weinert, Jörg Standfuss, Russell Fung, Gebhard F X Schertler, Robin Santra\",\"doi\":\"10.1063/4.0000178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low-pass spectral analysis (LPSA) is a recently developed dynamics retrieval algorithm showing excellent retrieval properties when applied to model data affected by extreme incompleteness and stochastic weighting. In this work, we apply LPSA to an experimental time-resolved serial femtosecond crystallography (TR-SFX) dataset from the membrane protein bacteriorhodopsin (bR) and analyze its parametric sensitivity. While most dynamical modes are contaminated by nonphysical high-frequency features, we identify two dominant modes, which are little affected by spurious frequencies. The dynamics retrieved using these modes shows an isomerization signal compatible with previous findings. We employ synthetic data with increasing timing uncertainty, increasing incompleteness level, pixel-dependent incompleteness, and photon counting errors to investigate the root cause of the high-frequency contamination of our TR-SFX modes. By testing a range of methods, we show that timing errors comparable to the dynamical periods to be retrieved produce a smearing of dynamical features, hampering dynamics retrieval, but with no introduction of spurious components in the solution, when convergence criteria are met. Using model data, we are able to attribute the high-frequency contamination of low-order dynamical modes to the high levels of noise present in the data. Finally, we propose a method to handle missing observations that produces a substantial dynamics retrieval improvement from synthetic data with a significant static component. Reprocessing of the bR TR-SFX data using the improved method yields dynamical movies with strong isomerization signals compatible with previous findings.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000178\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000178","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

低通频谱分析(LPSA)是最近开发的一种动态检索算法,在应用于受极端不完整性和随机加权影响的模型数据时,显示出卓越的检索特性。在这项工作中,我们将 LPSA 应用于膜蛋白细菌眼色素(bR)的时间分辨串行飞秒晶体学(TR-SFX)实验数据集,并分析了其参数敏感性。虽然大多数动力学模式都受到了非物理高频特征的污染,但我们发现了两个主要模式,它们受假频率的影响很小。利用这些模式检索到的动力学结果显示出与先前发现相一致的异构化信号。我们采用了时间不确定性不断增加、不完整性水平不断增加、与像素相关的不完整性和光子计数误差不断增加的合成数据,来研究 TR-SFX 模式高频污染的根本原因。通过对一系列方法的测试,我们发现,与要检索的动力学周期相当的定时误差会产生动力学特征的涂抹,妨碍动力学检索,但在满足收敛标准的情况下,不会在解中引入虚假成分。利用模型数据,我们能够将低阶动力学模式的高频污染归因于数据中存在的高水平噪声。最后,我们提出了一种处理缺失观测数据的方法,这种方法能显著改善具有大量静态成分的合成数据的动态检索效果。使用改进后的方法重新处理 bR TR-SFX 数据,可以得到与以前的发现相一致的具有强烈异构化信号的动力学电影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-pass spectral analysis of time-resolved serial femtosecond crystallography data.

Low-pass spectral analysis (LPSA) is a recently developed dynamics retrieval algorithm showing excellent retrieval properties when applied to model data affected by extreme incompleteness and stochastic weighting. In this work, we apply LPSA to an experimental time-resolved serial femtosecond crystallography (TR-SFX) dataset from the membrane protein bacteriorhodopsin (bR) and analyze its parametric sensitivity. While most dynamical modes are contaminated by nonphysical high-frequency features, we identify two dominant modes, which are little affected by spurious frequencies. The dynamics retrieved using these modes shows an isomerization signal compatible with previous findings. We employ synthetic data with increasing timing uncertainty, increasing incompleteness level, pixel-dependent incompleteness, and photon counting errors to investigate the root cause of the high-frequency contamination of our TR-SFX modes. By testing a range of methods, we show that timing errors comparable to the dynamical periods to be retrieved produce a smearing of dynamical features, hampering dynamics retrieval, but with no introduction of spurious components in the solution, when convergence criteria are met. Using model data, we are able to attribute the high-frequency contamination of low-order dynamical modes to the high levels of noise present in the data. Finally, we propose a method to handle missing observations that produces a substantial dynamics retrieval improvement from synthetic data with a significant static component. Reprocessing of the bR TR-SFX data using the improved method yields dynamical movies with strong isomerization signals compatible with previous findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
期刊最新文献
Structure and spin of the low- and high-spin states of Fe2+(phen)3 studied by x-ray scattering and emission spectroscopy. Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source. Laue-DIALS: Open-source software for polychromatic x-ray diffraction data. Spatiotemporal determination of photoinduced strain in a Weyl semimetal. High-repetition-rate ultrafast electron diffraction with direct electron detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1