在可获得治愈状态的混合治愈模型下的延迟函数估计。

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2023-07-01 Epub Date: 2023-03-08 DOI:10.1007/s10985-023-09591-x
Wende Clarence Safari, Ignacio López-de-Ullibarri, María Amalia Jácome
{"title":"在可获得治愈状态的混合治愈模型下的延迟函数估计。","authors":"Wende Clarence Safari, Ignacio López-de-Ullibarri, María Amalia Jácome","doi":"10.1007/s10985-023-09591-x","DOIUrl":null,"url":null,"abstract":"<p><p>This paper addresses the problem of estimating the conditional survival function of the lifetime of the subjects experiencing the event (latency) in the mixture cure model when the cure status information is partially available. The approach of past work relies on the assumption that long-term survivors are unidentifiable because of right censoring. However, in some cases this assumption is invalid since some subjects are known to be cured, e.g., when a medical test ascertains that a disease has entirely disappeared after treatment. We propose a latency estimator that extends the nonparametric estimator studied in López-Cheda et al. (TEST 26(2):353-376, 2017b) to the case when the cure status is partially available. We establish the asymptotic normality distribution of the estimator, and illustrate its performance in a simulation study. Finally, the estimator is applied to a medical dataset to study the length of hospital stay of COVID-19 patients requiring intensive care.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"29 3","pages":"608-627"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994787/pdf/","citationCount":"0","resultStr":"{\"title\":\"Latency function estimation under the mixture cure model when the cure status is available.\",\"authors\":\"Wende Clarence Safari, Ignacio López-de-Ullibarri, María Amalia Jácome\",\"doi\":\"10.1007/s10985-023-09591-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper addresses the problem of estimating the conditional survival function of the lifetime of the subjects experiencing the event (latency) in the mixture cure model when the cure status information is partially available. The approach of past work relies on the assumption that long-term survivors are unidentifiable because of right censoring. However, in some cases this assumption is invalid since some subjects are known to be cured, e.g., when a medical test ascertains that a disease has entirely disappeared after treatment. We propose a latency estimator that extends the nonparametric estimator studied in López-Cheda et al. (TEST 26(2):353-376, 2017b) to the case when the cure status is partially available. We establish the asymptotic normality distribution of the estimator, and illustrate its performance in a simulation study. Finally, the estimator is applied to a medical dataset to study the length of hospital stay of COVID-19 patients requiring intensive care.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\"29 3\",\"pages\":\"608-627\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994787/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-023-09591-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09591-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨的问题是,在混合治愈模型中,当治愈状态信息部分可用时,如何估计经历事件(潜伏期)的受试者一生的条件生存函数。过去的研究方法依赖于这样一个假设,即由于右删减,长期幸存者是不可识别的。然而,在某些情况下,这一假设是无效的,因为已知某些受试者已经治愈,例如,当医学检测确定疾病在治疗后完全消失时。我们提出了一种潜伏期估计器,它将 López-Cheda 等人(TEST 26(2):353-376, 2017b)中研究的非参数估计器扩展到了治愈状态部分可用的情况。我们建立了估计器的渐近正态分布,并在模拟研究中说明了其性能。最后,我们将该估计器应用于一个医疗数据集,以研究需要重症监护的 COVID-19 患者的住院时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latency function estimation under the mixture cure model when the cure status is available.

This paper addresses the problem of estimating the conditional survival function of the lifetime of the subjects experiencing the event (latency) in the mixture cure model when the cure status information is partially available. The approach of past work relies on the assumption that long-term survivors are unidentifiable because of right censoring. However, in some cases this assumption is invalid since some subjects are known to be cured, e.g., when a medical test ascertains that a disease has entirely disappeared after treatment. We propose a latency estimator that extends the nonparametric estimator studied in López-Cheda et al. (TEST 26(2):353-376, 2017b) to the case when the cure status is partially available. We establish the asymptotic normality distribution of the estimator, and illustrate its performance in a simulation study. Finally, the estimator is applied to a medical dataset to study the length of hospital stay of COVID-19 patients requiring intensive care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Conditional modeling of recurrent event data with terminal event. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. Optimal survival analyses with prevalent and incident patients. Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1